Persistence and stability of generalized ribosome flow models with time-varying transition rates

In this paper some important qualitative dynamical properties of generalized ribosome flow models are studied. Ribosome flow models known from the literature are generalized by allowing an arbitrary directed network structure between compartments, and by assuming general time-varying rate functions...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 18; no. 7; p. e0288148
Main Authors Vághy, Mihály A, Szederkényi, Gábor
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 07.07.2023
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper some important qualitative dynamical properties of generalized ribosome flow models are studied. Ribosome flow models known from the literature are generalized by allowing an arbitrary directed network structure between compartments, and by assuming general time-varying rate functions corresponding to the transitions. Persistence of the dynamics is shown using the chemical reaction network (CRN) representation of the system where the state variables correspond to ribosome density and the amount of free space in the compartments. The L1 contractivity of solutions is also proved in the case of periodic reaction rates having the same period. Further we prove the stability of different compartmental structures including strongly connected ones with entropy-like logarithmic Lyapunov functions through embedding the model into a weakly reversible CRN with time-varying reaction rates in a reduced state space. Moreover, it is shown that different Lyapunov functions may be assigned to the same model depending on the non-unique factorization of the reaction rates. The results are illustrated through several examples with biological meaning including the classical ribosome flow model on a ring.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0288148