Phantomless calibration of CT scans for hip fracture risk prediction in silico: Comparison with phantom-based calibration

Finite element models built from quantitative computed tomography images rely on element-wise mapping of material properties starting from Hounsfield Units (HU), which can be converted into mineral densities upon calibration. While calibration is preferably carried out by scanning a phantom with kno...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 19; no. 6; p. e0305474
Main Authors Szyszko, Julia A., Aldieri, Alessandra, La Mattina, Antonino A., Viceconti, Marco
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 14.06.2024
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Finite element models built from quantitative computed tomography images rely on element-wise mapping of material properties starting from Hounsfield Units (HU), which can be converted into mineral densities upon calibration. While calibration is preferably carried out by scanning a phantom with known-density components, conducting phantom-based calibration may not always be possible. In such cases, a phantomless procedure, where the scanned subject’s tissues are used as a phantom, is an interesting alternative. The aim of this study was to compare a phantom-based and a phantomless calibration method on 41 postmenopausal women. The proposed phantomless calibration utilized air, adipose, and muscle tissues, with reference equivalent mineral density values of -797, -95, and 38 mg/cm 3 , extracted from a previously performed phantom-based calibration. A 9-slice volume of interest (VOI) centred between the femoral head and knee rotation centres was chosen. Reference HU values for air, adipose, and muscle tissues were extracted by identifying HU distribution peaks within the VOI, and patient-specific calibration was performed using linear regression. Comparison of FE models calibrated with the two methods showed average relative differences of 1.99% for Young’s modulus1.30% for tensile and 1.34% for compressive principal strains. Excellent correlations (R 2 > 0.99) were identified for superficial maximum tensile and minimum compressive strains. Maximum normalised root mean square relative error (RMSRE) values settled at 4.02% for Young’s modulus, 2.99% for tensile, and 3.22% for compressive principal strains, respectively. The good agreement found between the two methods supports the adoption of the proposed methodology when phantomless calibration is needed.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0305474