Magnesium supplementation alleviates drought damage during vegetative stage of soybean plants

Our working hypothesis was that magnesium (Mg) supplementation modulates plant performance under low water availability and improves drought tolerance in soybean genotypes. Plants of Bônus 8579, M8808 and TMG1180 genotypes were grown under field conditions and subjected to three water stress treatme...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 18; no. 11; p. e0289018
Main Authors Santos, Amanda Soares, Pinho, Davielson Silva, Silva, Alana Cavalcante da, Brito, Ramilos Rodrigues de, Lacerda, Julian Junio de Jesus, Silva, Everaldo Moreira da, Batista, Jennyfer Yara Nunes, Fonseca, Bruno Sousa Figueiredo da, Gomes-Filho, Enéas, Paula-Marinho, Stelamaris de Oliveira, Dutra, Alexson Filgueiras, Leite, Marcos Renan Lima, Zuffo, Alan Mario, de Alcântara Neto, Francisco, Aguilera, Jorge González, García, José Antonio Rodríguez, Cubillas, Pedro Arias, Campano, Milko Raúl Rivera, Espino, Alejandro Manuel Ecos, Gonzales, Hebert Hernán Soto, Miranda, Rafael de Souza
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 03.11.2023
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Our working hypothesis was that magnesium (Mg) supplementation modulates plant performance under low water availability and improves drought tolerance in soybean genotypes. Plants of Bônus 8579, M8808 and TMG1180 genotypes were grown under field conditions and subjected to three water stress treatments (control, moderate and severe stress) and three Mg levels [0.9 (low), 1.3 (adequate) and 1.7 cmolc dm-³ (supplementation)]. After 28 days of drought imposition, the growth parameters, osmotic potential, relative water content, leaf succulence, Mg content and photosynthetic pigments were assessed. In general, drought drastically decreased the growth in all genotypes, and the reductions were intensified from moderate to severe stress. Under adequate Mg supply, TMG1180 was the most drought-tolerant genotype among the soybean plants, but Mg supplementation did not improve its tolerance. Conversely, although the M8808 genotype displayed inexpressive responses to drought under adequate Mg, the Mg-supplemented plants were found to have surprisingly better growth performance under stress compared to Bônus 8579 and TMG1180, irrespective of drought regime. The improved growth of high Mg-treated M8808-stressed plants correlated with low osmotic potential and increased relative water content, as well as shoot Mg accumulation, resulting in increased photosynthetic pigments and culminating in the highest drought tolerance. The results clearly indicate that Mg supplementation is a potential tool for alleviating water stress in M8808 soybean plants. Our findings suggest that the enhanced Mg-induced plant acclimation resulted from increased water content in plant tissues and strategic regulation of Mg content and photosynthetic pigments.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
AFD, MRLL, AMZ, FAN, JGA, JARG, PAC, MRRC, AMEE and HHSG also contributed equally to this work.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0289018