The effect of increased intra-abdominal pressure on orbital subarachnoid space width and intraocular pressure

In accordance with the trans-lamina cribrosa pressure difference theory, decreasing the trans-lamina cribrosa pressure difference can re- lieve glaucomatous optic neuropathy. Increased intracranial pressure can also reduce optic nerve damage in glaucoma patients, and a safe, effective and noninvasiv...

Full description

Saved in:
Bibliographic Details
Published inNeural regeneration research Vol. 13; no. 2; pp. 353 - 359
Main Authors Liu, Su-meng, Wang, Ning-li, Zuo, Zhen-tao, Chen, Wei-wei, Yang, Di-ya, Li, Zhen, Cao, Yi-wen
Format Journal Article
LanguageEnglish
Published India Wolters Kluwer India Pvt. Ltd 01.02.2018
Medknow Publications and Media Pvt. Ltd
Medknow Publications & Media Pvt. Ltd
Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China,Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China%State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China%Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
Medknow Publications & Media Pvt Ltd
Wolters Kluwer Medknow Publications
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In accordance with the trans-lamina cribrosa pressure difference theory, decreasing the trans-lamina cribrosa pressure difference can re- lieve glaucomatous optic neuropathy. Increased intracranial pressure can also reduce optic nerve damage in glaucoma patients, and a safe, effective and noninvasive way to achieve this is by increasing the intra-abdominal pressure. The purpose of this study was to observe the changes in orbital subarachnoid space width and intraocular pressure at elevated intra-abdominal pressure. An inflatable abdominal belt was tied to each of 15 healthy volunteers, aged 22-30 years (12 females and 3 males), at the navel level, without applying pressure to the abdomen, before they laid in the magnetic resonance imaging machine. The baseline orbital subarachnoid space width around the optic nerve was measured by magnetic resonance imaging at 1, 3, 9, and 15 mm behind the globe. The abdominal belt was inflated to increase the pressure to 40 mmHg (1 mmHg = 0.133 kPa), then the orbital subarachnoid space width was measured every 10 minutes for 2 hours. After removal of the pressure, the measurement was repeated 10 and 20 minutes later. In a separate trial, the intraocular pressure was measured for all the subjects at the same time points, before, during and after elevated intra-abdominal pressure. Results showed that the baseline mean orbital subarachnoid space width was 0.88 + 0.1 mm (range: 0.77-1.05 mm), 0.77 + 0.11 mm (range: 0.60-0.94 mm), 0.70 + 0.08 mm (range: 0.62-0.80 ram), and 0.68 _+ 0.08 mm (range: 0.57-0.77 mm) at 1, 3, 9, and 15 mm behind the globe, respectively. During the elevated intra-abdominal pressure, the orbital subarachnoid space width increased from the baseline and dilation of the optic nerve sheath was significant at 1, 3 and 9 mm behind the globe. After decompression of the abdominal pressure, the orbital subarachnoid space width normalized and returned to the baseline value. There was no significant difference in the intraocular pressure before, during and after the intra-abdominal pressure elevation. These results verified that the increased intra-abdominal pressure widens the orbital subarachnoid space in this acute trial, but does not alter the intraocular pressure, indicating that intraocular pressure is not affected by rapid increased in- tra-abdominal pressure. This study was registered in the Chinese Clinical Trial Registry (registration number: ChiCTR-ONRC-14004947).
Bibliography:nerve regeneration; intraocular pressure; intra-abdominal pressure; intracranial pressure; trans-lamina cribrosa pressure difference;orbital subarachnoid space width; magnetic resonance imaging; optic nerve sheath; glaucoma; cerebrospinal fluid pressure; subarachnoid space;neural regeneration
In accordance with the trans-lamina cribrosa pressure difference theory, decreasing the trans-lamina cribrosa pressure difference can re- lieve glaucomatous optic neuropathy. Increased intracranial pressure can also reduce optic nerve damage in glaucoma patients, and a safe, effective and noninvasive way to achieve this is by increasing the intra-abdominal pressure. The purpose of this study was to observe the changes in orbital subarachnoid space width and intraocular pressure at elevated intra-abdominal pressure. An inflatable abdominal belt was tied to each of 15 healthy volunteers, aged 22-30 years (12 females and 3 males), at the navel level, without applying pressure to the abdomen, before they laid in the magnetic resonance imaging machine. The baseline orbital subarachnoid space width around the optic nerve was measured by magnetic resonance imaging at 1, 3, 9, and 15 mm behind the globe. The abdominal belt was inflated to increase the pressure to 40 mmHg (1 mmHg = 0.133 kPa), then the orbital subarachnoid space width was measured every 10 minutes for 2 hours. After removal of the pressure, the measurement was repeated 10 and 20 minutes later. In a separate trial, the intraocular pressure was measured for all the subjects at the same time points, before, during and after elevated intra-abdominal pressure. Results showed that the baseline mean orbital subarachnoid space width was 0.88 + 0.1 mm (range: 0.77-1.05 mm), 0.77 + 0.11 mm (range: 0.60-0.94 mm), 0.70 + 0.08 mm (range: 0.62-0.80 ram), and 0.68 _+ 0.08 mm (range: 0.57-0.77 mm) at 1, 3, 9, and 15 mm behind the globe, respectively. During the elevated intra-abdominal pressure, the orbital subarachnoid space width increased from the baseline and dilation of the optic nerve sheath was significant at 1, 3 and 9 mm behind the globe. After decompression of the abdominal pressure, the orbital subarachnoid space width normalized and returned to the baseline value. There was no significant difference in the intraocular pressure before, during and after the intra-abdominal pressure elevation. These results verified that the increased intra-abdominal pressure widens the orbital subarachnoid space in this acute trial, but does not alter the intraocular pressure, indicating that intraocular pressure is not affected by rapid increased in- tra-abdominal pressure. This study was registered in the Chinese Clinical Trial Registry (registration number: ChiCTR-ONRC-14004947).
11-5422/R
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Author contributions: NLW, SML and WWC designed the study. DYY and ZL provided critical revision. SML, WWC and ZTZ performed experiments. SML and YWC analyzed data. SML wrote the paper. All authors approved the final version of the paper.
ISSN:1673-5374
1876-7958
DOI:10.4103/1673-5374.226407