Predicting vulnerabilities of North American shorebirds to climate change

Despite an increase in conservation efforts for shorebirds, there are widespread declines of many species of North American shorebirds. We wanted to know whether these declines would be exacerbated by climate change, and whether relatively secure species might become at-risk species. Virtually all o...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 9; no. 9; p. e108899
Main Authors Galbraith, Hector, DesRochers, David W, Brown, Stephen, Reed, J Michael
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 30.09.2014
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Despite an increase in conservation efforts for shorebirds, there are widespread declines of many species of North American shorebirds. We wanted to know whether these declines would be exacerbated by climate change, and whether relatively secure species might become at-risk species. Virtually all of the shorebird species breeding in the USA and Canada are migratory, which means climate change could affect extinction risk via changes on the breeding, wintering, and/or migratory refueling grounds, and that ecological synchronicities could be disrupted at multiple sites. To predict the effects of climate change on shorebird extinction risks, we created a categorical risk model complementary to that used by Partners-in-Flight and the U.S. Shorebird Conservation Plan. The model is based on anticipated changes in breeding, migration, and wintering habitat, degree of dependence on ecological synchronicities, migration distance, and degree of specialization on breeding, migration, or wintering habitat. We evaluated 49 species, and for 3 species we evaluated 2 distinct populations each, and found that 47 (90%) taxa are predicted to experience an increase in risk of extinction. No species was reclassified into a lower-risk category, although 6 species had at least one risk factor decrease in association with climate change. The number of species that changed risk categories in our assessment is sensitive to how much of an effect of climate change is required to cause the shift, but even at its least sensitive, 20 species were at the highest risk category for extinction. Based on our results it appears that shorebirds are likely to be highly vulnerable to climate change. Finally, we discuss both how our approach can be integrated with existing risk assessments and potential future directions for predicting change in extinction risk due to climate change.
Bibliography:Conceived and designed the experiments: HG DWD SB JMR. Performed the experiments: HG DWD SB JMR. Analyzed the data: HG DWD SB JMR. Contributed reagents/materials/analysis tools: HG DWD SB JMR. Wrote the paper: HG DWD SB JMR.
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0108899