Recombinant expression and in vitro characterisation of active Huwentoxin-IV

Huwentoxin-IV (HwTx-IV) is a 35-residue neurotoxin peptide with potential application as a novel analgesic. It is a member of the inhibitory cystine knot (ICK) peptide family, characterised by a compact globular structure maintained by three intramolecular disulfide bonds. Here we describe a novel s...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 8; no. 12; p. e83202
Main Authors Sermadiras, Isabelle, Revell, Jefferson, Linley, John E, Sandercock, Alan, Ravn, Peter
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 06.12.2013
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Huwentoxin-IV (HwTx-IV) is a 35-residue neurotoxin peptide with potential application as a novel analgesic. It is a member of the inhibitory cystine knot (ICK) peptide family, characterised by a compact globular structure maintained by three intramolecular disulfide bonds. Here we describe a novel strategy for producing non-tagged, fully folded ICK-toxin in a bacterial system. HwTx-IV was expressed as a cleavable fusion to small ubiquitin-related modifier (SUMO) in the cytoplasm of the SHuffle T7 Express lysY Escherichia coli strain, which allows cytosolic disulfide bond formation. Purification by IMAC with selective elution of monomeric SUMO fusion followed by proteolytic cleavage and polishing chromatographic steps yielded pure homogeneous toxin. Recombinant HwTx-IV is produced with a C-terminal acid, whereas the native peptide is C-terminally amidated. HwTx-IV(acid) inhibited Nav1.7 in a dose dependent manner (IC50 = 463-727 nM). In comparison to HwTx-IV(amide) (IC50 = 11 ± 3 nM), the carboxylate was ~50 fold less potent on Nav1.7, which highlights the impact of the C-terminus. As the amide bond of an additional amino acid may mimic the carboxamide, we expressed the glycine-extended analogue HwTx-IV(G36)(acid) in the SUMO/SHuffle system. The peptide was approximately three fold more potent on Nav1.7 in comparison to HwTx-IV(acid) (IC50 = 190 nM). In conclusion, we have established a novel system for expression and purification of fully folded and active HwTx-IV(acid) in bacteria, which could be applicable to other structurally complex and cysteine rich peptides. Furthermore, we discovered that glycine extension of HwTx-IV(acid) restores some of the potency of the native carboxamide. This finding may also apply to other C-terminally amidated peptides produced recombinantly.
Bibliography:Conceived and designed the experiments: IS PR. Performed the experiments: IS JR JL AS. Analyzed the data: IS JL AS PR. Contributed reagents/materials/analysis tools: IS JR JL AS. Wrote the manuscript: IS PR.
Competing Interests: At the time when the work for this manuscript was performed, all authors were employed by MedImmune and held stock in MedImmune, Ltd. All the authors were involved in study design, data collection and analysis, decision to publish and preparation of the manuscript. This does not alter the authors' adherence to all the PLOS ONE policies on sharing data and materials.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0083202