Transcriptional networks are associated with resistance to Mycobacterium tuberculosis infection

Understanding mechanisms of resistance to M. tuberculosis (M.tb) infection in humans could identify novel therapeutic strategies as it has for other infectious diseases, such as HIV. To compare the early transcriptional response of M.tb-infected monocytes between Ugandan household contacts of tuberc...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 12; no. 4; p. e0175844
Main Authors Seshadri, Chetan, Sedaghat, Nafiseh, Campo, Monica, Peterson, Glenna, Wells, Richard D., Olson, Gregory S., Sherman, David R., Stein, Catherine M., Mayanja-Kizza, Harriet, Shojaie, Ali, Boom, W. Henry, Hawn, Thomas R.
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 17.04.2017
Public Library of Science (PLoS)
Subjects
Age
BCG
HIV
Online AccessGet full text

Cover

Loading…
More Information
Summary:Understanding mechanisms of resistance to M. tuberculosis (M.tb) infection in humans could identify novel therapeutic strategies as it has for other infectious diseases, such as HIV. To compare the early transcriptional response of M.tb-infected monocytes between Ugandan household contacts of tuberculosis patients who demonstrate clinical resistance to M.tb infection (cases) and matched controls with latent tuberculosis infection. Cases (n = 10) and controls (n = 18) were selected from a long-term household contact study in which cases did not convert their tuberculin skin test (TST) or develop tuberculosis over two years of follow up. We obtained genome-wide transcriptional profiles of M.tb-infected peripheral blood monocytes and used Gene Set Enrichment Analysis and interaction networks to identify cellular processes associated with resistance to clinical M.tb infection. We discovered gene sets associated with histone deacetylases that were differentially expressed when comparing resistant and susceptible subjects. We used small molecule inhibitors to demonstrate that histone deacetylase function is important for the pro-inflammatory response to in-vitro M.tb infection in human monocytes. Monocytes from individuals who appear to resist clinical M.tb infection differentially activate pathways controlled by histone deacetylase in response to in-vitro M.tb infection when compared to those who are susceptible and develop latent tuberculosis. These data identify a potential cellular mechanism underlying the clinical phenomenon of resistance to M.tb infection despite known exposure to an infectious contact.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Conceptualization: CS MC GP RDW TRH.Data curation: CS.Formal analysis: CS GSO NS AS.Funding acquisition: WHB.Investigation: CS MC GP RDW.Resources: DRS CMS HMK WHB.Writing – original draft: CS.Writing – review & editing: CS TRH.
Membership of the Tuberculosis Research Unit is provided in the Acknowledgments.
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0175844