Reweighted multi-view clustering with tissue-like P system
Multi-view clustering has received substantial research because of its ability to discover heterogeneous information in the data. The weight distribution of each view of data has always been difficult problem in multi-view clustering. In order to solve this problem and improve computational efficien...
Saved in:
Published in | PloS one Vol. 18; no. 2; p. e0269878 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
10.02.2023
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Multi-view clustering has received substantial research because of its ability to discover heterogeneous information in the data. The weight distribution of each view of data has always been difficult problem in multi-view clustering. In order to solve this problem and improve computational efficiency at the same time, in this paper, Reweighted multi-view clustering with tissue-like P system (RMVCP) algorithm is proposed. RMVCP performs a two-step operation on data. Firstly, each similarity matrix is constructed by self-representation method, and each view is fused to obtain a unified similarity matrix and the updated similarity matrix of each view. Subsequently, the updated similarity matrix of each view obtained in the first step is taken as the input, and then the view fusion operation is carried out to obtain the final similarity matrix. At the same time, Constrained Laplacian Rank (CLR) is applied to the final matrix, so that the clustering result is directly obtained without additional clustering steps. In addition, in order to improve the computational efficiency of the RMVCP algorithm, the algorithm is embedded in the framework of the tissue-like P system, and the computational efficiency can be improved through the computational parallelism of the tissue-like P system. Finally, experiments verify that the effectiveness of the RMVCP algorithm is better than existing state-of-the-art algorithms. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0269878 |