The Pectin Methylesterase Gene Complement of Phytophthora sojae: Structural and Functional Analyses, and the Evolutionary Relationships with Its Oomycete Homologs

Phytophthora sojae is an oomycete pathogen that causes the disease known as root and stem rot in soybean plants, frequently leading to massive economic damage. Additionally, P. sojae is increasingly being utilized as a model for phytopathogenic oomycete research. Despite the economic and scientific...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 10; no. 11; p. e0142096
Main Authors Horowitz, Brent B, Ospina-Giraldo, Manuel D
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 06.11.2015
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Phytophthora sojae is an oomycete pathogen that causes the disease known as root and stem rot in soybean plants, frequently leading to massive economic damage. Additionally, P. sojae is increasingly being utilized as a model for phytopathogenic oomycete research. Despite the economic and scientific importance of P. sojae, the mechanism by which it penetrates the host roots is not yet fully understood. It has been found that oomycetes are not capable of penetrating the cell wall solely through mechanical force, suggesting that alternative factors facilitate breakdown of the host cell wall. Pectin methylesterases have been suggested to be important for Phytophthora pathogenicity, but no data exist on their role in the P. sojae infection process. We have scanned the newly revised version of the annotated P. sojae genome for the presence of putative pectin methylesterases genes and conducted a sequence analysis of all gene models found. We also searched for potential regulatory motifs in the promoter region of the proposed P. sojae models, and investigated the gene expression levels throughout the early course of infection on soybean plants. We found that P. sojae contains a large repertoire of pectin methylesterase-coding genes and that most of these genes display similar motifs in the promoter region, indicating the possibility of a shared regulatory mechanism. Phylogenetic analyses confirmed the evolutionary relatedness of the pectin methylesterase-coding genes within and across Phytophthora spp. In addition, the gene duplication events that led to the emergence of this gene family appear to have occurred prior to many speciation events in the genus Phytophthora. Our results also indicate that the highest levels of expression occurred in the first 24 hours post inoculation, with expression falling after this time. Our study provides evidence that pectin methylesterases may be important for the early action of the P. sojae infection process.
Bibliography:Conceived and designed the experiments: BBH MOG. Performed the experiments: BBH. Analyzed the data: BBH MOG. Contributed reagents/materials/analysis tools: MOG. Wrote the paper: BBH MOG.
Current Address: Department of Biological Sciences, University of Denver, Denver, Colorado, United States of America
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0142096