Assessment of endophytic bacterial diversity in rose by high-throughput sequencing analysis

The endophytic bacterial diversity of rose was analyzed by high-throughput sequencing of 16S rDNA and functional prediction of the bacterial community. The number of bacterial sequence reads obtained from 18 rose samples ranged from 63,951 to 114,833, and reads were allocated to 1982 OTUs based on s...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 15; no. 4; p. e0230924
Main Authors Xia, Ao-Nan, Liu, Jun, Kang, Da-Cheng, Zhang, Hai-Guang, Zhang, Ru-Hua, Liu, Yun-Guo
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 02.04.2020
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The endophytic bacterial diversity of rose was analyzed by high-throughput sequencing of 16S rDNA and functional prediction of the bacterial community. The number of bacterial sequence reads obtained from 18 rose samples ranged from 63,951 to 114,833, and reads were allocated to 1982 OTUs based on sequences of the V3-V4 region. The highest Shannon Index was found in Luogang rose (1.93), while the lowest was found in Grasse rose (0.35). The bacterial sequence reads were grouped into three different phyla: Firmicutes, Proteobacteria, and Actinobacteria. At the genus level, Bacillus and Staphylococcus had the highest abundance across all 18 samples; Bacillus was particularly abundant in Daguo rose (99.09%), Rosa damascena (99.65%), and Fenghua rose (99.58%). Unclassified OTUs were also found in all samples. PICRUSt gene prediction revealed that each endophyte sample contained multiple KEGG functional modules related to human metabolism and health. A high abundance of functional genes were involved in (1) Amino Acid Metabolism, (2) Carbohydrate Metabolism, (3) Cellular Processes and Signaling, (4) Energy Metabolism, and (5) Membrane Transport, indicating that the endophytic community comprised a wide variety of microorganisms and genes that could be used for further studies. The rose endophytic bacterial community is rich in diversity; community composition varies among roses and contains functional information related to human health.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0230924