BKM120 induces apoptosis and inhibits tumor growth in medulloblastoma

Medulloblastoma (MB) is the most common malignant brain tumor in children, accounting for nearly 20 percent of all childhood brain tumors. New treatment strategies are needed to improve patient survival outcomes and to reduce adverse effects of current therapy. The phosphatidylinositol-3-kinase (PI3...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 12; no. 6; p. e0179948
Main Authors Zhao, Ping, Hall, Jacob, Durston, Mary, Voydanoff, Austin, VanSickle, Elizabeth, Kelly, Shannon, Nagulapally, Abhinav B, Bond, Jeffery, Saulnier Sholler, Giselle
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 29.06.2017
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Medulloblastoma (MB) is the most common malignant brain tumor in children, accounting for nearly 20 percent of all childhood brain tumors. New treatment strategies are needed to improve patient survival outcomes and to reduce adverse effects of current therapy. The phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) intracellular signaling pathway plays a key role in cellular metabolism, proliferation, survival and angiogenesis, and is often constitutively activated in human cancers, providing unique opportunities for anticancer therapeutic intervention. The aim of this study was to evaluate the pre-clinical activity of BKM120, a selective pan-class I PI3K inhibitor, on MB cell lines and primary samples. IC50 values of BKM120 in the twelve MB cell lines tested ranged from 0.279 to 4.38 μM as determined by cell viability assay. IncuCyte ZOOM Live-Cell Imaging system was used for kinetic monitoring of cytotoxicity of BKM120 and apoptosis in MB cells. BKM120 exhibited cytotoxicity in MB cells in a dose and time-dependent manner by inhibiting activation of downstream signaling molecules AKT and mTOR, and activating caspase-mediated apoptotic pathways. Furthermore, BKM120 decreased cellular glycolytic metabolic activity in MB cell lines in a dose-dependent manner demonstrated by ATP level per cell. In MB xenograft mouse study, DAOY cells were implanted in the flank of nude mice and treated with vehicle, BKM120 at 30 mg/kg and 60 mg/kg via oral gavage daily. BKM120 significantly suppressed tumor growth and prolonged mouse survival. These findings help to establish a basis for clinical trials of BKM120, which could be a novel therapy for the treatment of medulloblastoma patients.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0179948