A security technology of power relay using edge computing
The purposes are to find the techniques suitable for the safety relay protection of intelligent substations and discuss the applicability of edge computing in relay protection. Regarding relay protection in intelligent substations, edge computing and optimized simulated annealing algorithm (OSAA) ar...
Saved in:
Published in | PloS one Vol. 16; no. 9; p. e0253428 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
02.09.2021
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The purposes are to find the techniques suitable for the safety relay protection of intelligent substations and discuss the applicability of edge computing in relay protection. Regarding relay protection in intelligent substations, edge computing and optimized simulated annealing algorithm (OSAA) are combined innovatively to form an edge computing strategy. On this basis, an edge computing model is proposed based on relay fault traveling waves. Under different computing shunt tasks, OSAA can converge after about 1,100 iterations, and its computing time is relatively short. As the global optimal time delay reaches 0.5295, the corresponding computing time is 456.27s, apparently better than the linear search method. The proposed model can reduce the computing time significantly, playing an active role in the safe shunting of power relays. The simulation also finds that the voltage and current waveforms corresponding to the fault state of Phase A are consistent with the actual situations. To sum up, this model provides a reference for improving and optimizing intelligent substation relay protection. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Correction/Retraction-3 Competing Interests: The authors have declared that no competing interests exist. |
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0253428 |