Characterisation of two Toxoplasma PROPPINs homologous to Atg18/WIPI suggests they have evolved distinct specialised functions

Toxoplasma gondii is a parasitic protist possessing a limited set of proteins involved in the autophagy pathway, a self-degradative machinery for protein and organelle recycling. This distant eukaryote has even repurposed part of this machinery, centered on protein ATG8, for a non-degradative functi...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 13; no. 4; p. e0195921
Main Authors Nguyen, Hoa Mai, Liu, Shuxian, Daher, Wassim, Tan, Feng, Besteiro, Sébastien
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 16.04.2018
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Toxoplasma gondii is a parasitic protist possessing a limited set of proteins involved in the autophagy pathway, a self-degradative machinery for protein and organelle recycling. This distant eukaryote has even repurposed part of this machinery, centered on protein ATG8, for a non-degradative function related to the maintenance of the apicoplast, a parasite-specific organelle. However, some evidence also suggest Toxoplasma is able to generate autophagic vesicles upon stress, and that some autophagy-related proteins, such as ATG9, might be involved solely in the canonical autophagy function. Here, we have characterised TgPROP1 and TgPROP2, two Toxoplasma proteins containing WD-40 repeat that can bind lipids for their recruitment to vesicular structures upon stress. They belong to the PROPPIN family and are homologues to ATG18/WIPI, which are known to be important for the autophagic process. We conducted a functional analysis of these two Toxoplasma PROPPINs. One of them is dispensable for normal in vitro growth, although it may play a role for parasite survival in specific stress conditions or for parasite fitness in the host, through a canonical autophagy-related function. The other, however, seems important for parasite viability in normal growth conditions and could be primarily involved in a non-canonical function. These divergent roles for two proteins from the same family illustrate the functional versatility of the autophagy-related machinery in Toxoplasma.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0195921