Thr 163 Phosphorylation Causes Mcl-1 Stabilization when Degradation Is Independent of the Adjacent GSK3-Targeted Phosphodegron, Promoting Drug Resistance in Cancer
The antiapoptotic Bcl-2 family member Mcl-1 is a PEST protein (containing sequences enriched in proline, glutamic acid, serine, and threonine) and is subject to rapid degradation via multiple pathways. Impaired degradation leading to the maintenance of Mcl-1 expression is an important determinant of...
Saved in:
Published in | PloS one Vol. 7; no. 10; p. e47060 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
09.10.2012
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The antiapoptotic Bcl-2 family member Mcl-1 is a PEST protein (containing sequences enriched in proline, glutamic acid, serine, and threonine) and is subject to rapid degradation via multiple pathways. Impaired degradation leading to the maintenance of Mcl-1 expression is an important determinant of drug resistance in cancer. Phosphorylation at Thr 163 in the PEST region, stimulated by 12-O-tetradecanoylphorbol acetic acid (TPA)-induced activation of extracellular signal-regulated kinase (ERK), is associated with Mcl-1 stabilization in BL41-3 Burkitt lymphoma cells. This contrasts with the observation that Thr 163 phosphorylation in normal fibroblasts primes glycogen synthase kinase (GSK3)-induced phosphorylation at Ser 159, producing a phosphodegron that targets Mcl-1 for degradation. In the present follow-up studies in BL41-3 cells, Mcl-1 degradation was found to be independent of the GSK3-mediated pathway, providing a parallel to emerging findings showing that Mcl-1 degradation through this pathway is lost in many different types of cancer. Findings in Mcl-1-transfected CHO cells corroborated those in BL41-3 cells in that the GSK3-targeted phosphodegron did not play a major role in Mcl-1 degradation, and a phosphomimetic T163E mutation resulted in marked Mcl-1 stabilization. TPA-treated BL41-3 cells, in addition to exhibiting Thr 163 phosphorylation and Mcl-1 stabilization, exhibited an ∼10-fold increase in resistance to multiple chemotherapeutic agents, including Ara-C, etoposide, vinblastine, or cisplatin. In these cancer cells in which Mcl-1 degradation is not dependent on the GSK3/phosphodegron-targeted pathway, ERK activation and Thr 163 phosphorylation are associated with pronounced Mcl-1 stabilization and drug resistance - effects that can be suppressed by inhibition of ERK activation. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no competing interests exist. Conceived and designed the experiments: SKN JAV AMD RWC. Performed the experiments: SKN JAV AMD. Analyzed the data: SKN JAV RWC. Contributed reagents/materials/analysis tools: SKN JAV AMD AD RWC. Wrote the paper: SKN JG RWC. Performed initial phospho-peptide mapping of Mcl-1 that lead to the development of phosphor-site specific mutants: MAG SRH. Current address: Immunostains Laboratory, Division of Anatomic Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, United States of America Current address: Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, United States of America Current address: School of Pharmacy, Husson University, Bangor, Maine, United States of America Current address: Laboratory of Immunobiology and Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America Current address: Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Bizkaia, Ed. 800, Derio, Spain |
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0047060 |