Dynamic changes of SETD2, a histone H3K36 methyltransferase, in porcine oocytes, IVF and SCNT embryos

SETD2 (SET domain containing protein 2) acts as a histone H3 lysine 36 (H3K36)-specific methyltransferase and may play important roles in active gene transcription in human cells. However, its expression and role in porcine oocytes and preimplantation embryos are not well understood. Here, we used i...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 13; no. 2; p. e0191816
Main Authors Diao, Yun Fei, Lin, Tao, Li, Xiaoxia, Oqani, Reza K, Lee, Jae Eun, Kim, So Yeon, Jin, Dong Il
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 15.02.2018
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:SETD2 (SET domain containing protein 2) acts as a histone H3 lysine 36 (H3K36)-specific methyltransferase and may play important roles in active gene transcription in human cells. However, its expression and role in porcine oocytes and preimplantation embryos are not well understood. Here, we used immunofluorescence and laser scanning confocal microscopy to examine SETD2 expression in porcine fetal fibroblasts, oocytes, and preimplantation embryos derived from in vitro fertilization (IVF), parthenogenetic activation (PA), and somatic cell nuclear transfer (SCNT). In porcine fetal fibroblasts, SETD2 expression was detected in interphase cells, but not in M (mitotic)-phase cells. The SETD2 signal was observed in non-surrounded nucleolus (NSN)-stage oocytes, but not in surrounded nucleolus (SN)-, metaphase I (MI)-, or metaphase II (MII)-stage oocytes. The SETD2 signal was detectable in sperm, and undetectable immediately after fertilization, detectable at the 2-cell stage, and peaked at the 4-cell stage of IVF embryos in which porcine embryonic genome is activated. Similar to the pattern found in IVF embryos, the SETD2 signal was absent from PA embryos at the 1-cell stage, but it was detected at the 2-cell stage and thereafter maintained to the blastocyst stage. Interestingly, unlike the IVF and PA embryos, the SETD2 signal was detected throughout the development of SCNT embryos, including at the 1-cell stage. These data suggest that SETD2 may be functional for embryonic gene transcription in porcine preimplantation embryos. It is further speculated that the aberrant expression of SETD2 at the 1-cell stage of porcine SCNT embryos may be a factor in the low efficiency of cloning in pig.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0191816