Identification, molecular characterization and expression of JAZ genes in Lycoris aurea

Jasmonates (JAs) are key phytohormones involved in regulation of plant growth and development, stress responses, and secondary metabolism. It has been reported that treatments with JAs could increase the contents of Amaryllidaceae alkaloids in Amaryllidaceae plants. Jasmonate ZIM (zinc-finger inflor...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 15; no. 3; p. e0230177
Main Authors Wang, Peng, Yu, Shuojun, Han, Xiaokang, Xu, Junya, He, Qingyuan, Xu, Sheng, Wang, Ren
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 17.03.2020
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Jasmonates (JAs) are key phytohormones involved in regulation of plant growth and development, stress responses, and secondary metabolism. It has been reported that treatments with JAs could increase the contents of Amaryllidaceae alkaloids in Amaryllidaceae plants. Jasmonate ZIM (zinc-finger inflorescence meristem) domain (JAZ) proteins are key components in JA signal processes. However, JAZ proteins have not been characterized in genus Lycoris. In this study, we identified and cloned seven differentially expressed JAZ genes (namely LaJAZ1-LaJAZ7) from Lycoris aurea. Bioinformatic analyses revealed that these seven LaJAZ proteins contain the ZIM domain and JA-associated (Jas, also named CCT_2) motif. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis revealed that these LaJAZ genes display different expression patterns in L. aurea tissues, and most of them are inducible when treated with methyl jasmonate (MeJA) treatment. Subcellular localization assay demonstrated that LaJAZ proteins are localized in the cell nucleus or cytoplasm. In addition, LaJAZ proteins could interact with each other to form homodimer and/or heterodimer. The findings in this study may facilitate further functional research of the LaJAZ genes, especially the potential regulatory mechanism of plant secondary metabolites including Amaryllidaceae alkaloids in L. aurea.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0230177