Significance of Relative Position of Cellulases in Designer Cellulosomes for Optimized Cellulolysis
Degradation of cellulose is of major interest in the quest for alternative sources of renewable energy, for its positive effects on environment and ecology, and for use in advanced biotechnological applications. Due to its microcrystalline organization, celluose is extremely difficult to degrade, al...
Saved in:
Published in | PloS one Vol. 10; no. 5; p. e0127326 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
29.05.2015
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
ISSN | 1932-6203 1932-6203 |
DOI | 10.1371/journal.pone.0127326 |
Cover
Summary: | Degradation of cellulose is of major interest in the quest for alternative sources of renewable energy, for its positive effects on environment and ecology, and for use in advanced biotechnological applications. Due to its microcrystalline organization, celluose is extremely difficult to degrade, although numerous microbes have evolved that produce the appropriate enzymes. The most efficient known natural cellulolytic system is produced by anaerobic bacteria, such as C. thermocellum, that possess a multi-enzymatic complex termed the cellulosome. Our laboratory has devised and developed the designer cellulosome concept, which consists of chimaeric scaffoldins for controlled incorporation of recombinant polysaccharide-degrading enzymes. Recently, we reported the creation of a combinatorial library of four cellulosomal modules comprising a basic chimaeric scaffoldin, i.e., a CBM and 3 divergent cohesin modules. Here, we employed selected members of this library to determine whether the position of defined cellulolytic enzymes is important for optimized degradation of a microcrystalline cellulosic substrate. For this purpose, 10 chimaeric scaffoldins were used for incorporation of three recombinant Thermobifida fusca enzymes: the processive endoglucanase Cel9A, endoglucanase Cel5A and exoglucanase Cel48A. In addition, we examined whether the characteristic properties of the T. fusca enzymes as designer cellulosome components are unique to this bacterium by replacing them with parallel enzymes from Clostridium thermocellum. The results support the contention that for a given set of cellulosomal enzymes, their relative position within a scaffoldin can be critical for optimal degradation of microcrystaline cellulosic substrates. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Conceived and designed the experiments: JS SM. Performed the experiments: JS AK MS. Analyzed the data: JS AK. Contributed reagents/materials/analysis tools: YV MS SM RL. Wrote the paper: JS EAB. Competing Interests: The authors have the following interests: U.S. Patent Application No. 13/702711 (15 August 2013), "Artificial Cellulosomes Comprising Multiple Scaffolds and Uses thereof in Biomass Degradation": Johanna Stern, Yael Vazana and Edward A. Bayer. There are no further patents, products in development or marketed products to declare. This does not alter the authors' adherence to all the PLOS ONE policies on sharing data and materials, as detailed online in the guide for authors. |
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0127326 |