Reduced Slow-Wave Rebound during Daytime Recovery Sleep in Middle-Aged Subjects
Cortical synchronization during NREM sleep, characterized by electroencephalographic slow waves (SW <4 Hz and >75 µV), is strongly related to the number of hours of wakefulness prior to sleep and to the quality of the waking experience. Whether a similar increase in wakefulness length leads to...
Saved in:
Published in | PloS one Vol. 7; no. 8; p. e43224 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
13.08.2012
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
ISSN | 1932-6203 1932-6203 |
DOI | 10.1371/journal.pone.0043224 |
Cover
Loading…
Summary: | Cortical synchronization during NREM sleep, characterized by electroencephalographic slow waves (SW <4 Hz and >75 µV), is strongly related to the number of hours of wakefulness prior to sleep and to the quality of the waking experience. Whether a similar increase in wakefulness length leads to a comparable enhancement in NREM sleep cortical synchronization in young and older subjects is still a matter of debate in the literature. Here we evaluated the impact of 25-hours of wakefulness on SW during a daytime recovery sleep episode in 29 young (27 y ± 5), and 34 middle-aged (51 y ± 5) subjects. We also assessed whether age-related changes in NREM sleep cortical synchronization predicts the ability to maintain sleep during daytime recovery sleep. Compared to baseline sleep, sleep efficiency was lower during daytime recovery sleep in both age-groups but the effect was more prominent in the middle-aged than in the young subjects. In both age groups, SW density, amplitude, and slope increased whereas SW positive and negative phase duration decreased during daytime recovery sleep compared to baseline sleep, particularly in anterior brain areas. Importantly, compared to young subjects, middle-aged participants showed lower SW density rebound and SW positive phase duration enhancement after sleep deprivation during daytime recovery sleep. Furthermore, middle-aged subjects showed lower SW amplitude and slope enhancements after sleep deprivation than young subjects in frontal and prefrontal derivations only. None of the SW characteristics at baseline were associated with daytime recovery sleep efficiency. Our results support the notion that anterior brain areas elicit and may necessitate more intense recovery and that aging reduces enhancement of cortical synchronization after sleep loss, particularly in these areas. Age-related changes in the quality of wake experience may underlie age-related reduction in markers of cortical synchronization enhancement after sustained wakefulness. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 Competing Interests: The authors have declared that no competing interests exist. Conceived and designed the experiments: JC. Performed the experiments: ML NM VL GV. Analyzed the data: ML. Contributed reagents/materials/analysis tools: JC JD DF JFG. Wrote the paper: ML JC JFG GV NM VL. Evaluated blood sample analysis and urinalysis results and used them to rule out significant medical conditions: DF. |
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0043224 |