Acute toxicity and genotoxicity of silver nanoparticle in rats

The potential risk of a nanoparticle as a medical application has raised wide concerns, and this study aims to investigate silver nanoparticle (AgNP)-induced acute toxicities, genotoxicities, target organs and the underlying mechanisms. Sprague-Dawley rats were randomly divided into 4 groups (n = 4...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 12; no. 9; p. e0185554
Main Authors Wen, Hairuo, Dan, Mo, Yang, Ying, Lyu, Jianjun, Shao, Anliang, Cheng, Xiang, Chen, Liang, Xu, Liming
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 27.09.2017
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The potential risk of a nanoparticle as a medical application has raised wide concerns, and this study aims to investigate silver nanoparticle (AgNP)-induced acute toxicities, genotoxicities, target organs and the underlying mechanisms. Sprague-Dawley rats were randomly divided into 4 groups (n = 4 each group), and AgNP (containing Ag nanoparticles and released Ag+, 5 mg/kg), Ag+ (released from the same dose of AgNP, 0.0003 mg/kg), 5% sucrose solution (vechicle control) and cyclophophamide (positive control, 40 mg/kg) were administrated intravenously for 24 h respectively. Clinical signs and body weight of rats were recorded, and the tissues were subsequently collected for biochemical examination, Ag+ distribution detection, histopathological examination and genotoxicity assays. The rank of Ag detected in organs from highest to lowest is lung>spleen>liver>kidney>thymus>heart. Administration of AgNP induced a marked increase of ALT, BUN, TBil and Cre. Histopathological examination results showed that AgNP induced more extensive organ damages in liver, kidneys, thymus, and spleen. Bone marrow micronucleus assay found no statistical significance among groups (p > 0.05), but the number of aberration cells and multiple aberration cells were predominately increased from rats dosed with Ag+ and AgNP (p < 0.01), and more polyploidy cells were generated in the AgNP group (4.3%) compared with control. Our results indicated that the AgNP accumulated in the immune system organs, and mild irritation was observed in the thymus and spleen of animals treated with AgNP, but not with Ag+. The liver and kidneys could be the most affected organs by an acute i.v. dose of AgNP, and significantly increased chromosome breakage and polyploidy cell rates also implied the potential genotoxicity of AgNP. However, particle-specific toxicities and potential carcinogenic effect remain to be further confirmed in a chronic toxicity study.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0185554