The Mph1 helicase can promote telomere uncapping and premature senescence in budding yeast

Double strand breaks (DSBs) can be repaired via either Non-Homologous End Joining (NHEJ) or Homology directed Repair (HR). Telomeres, which resemble DSBs, are refractory to repair events in order to prevent chromosome end fusions and genomic instability. In some rare instances telomeres engage in Br...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 7; no. 7; p. e42028
Main Authors Luke-Glaser, Sarah, Luke, Brian
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 27.07.2012
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Double strand breaks (DSBs) can be repaired via either Non-Homologous End Joining (NHEJ) or Homology directed Repair (HR). Telomeres, which resemble DSBs, are refractory to repair events in order to prevent chromosome end fusions and genomic instability. In some rare instances telomeres engage in Break-Induced Replication (BIR), a type of HR, in order to maintain telomere length in the absence of the enzyme telomerase. Here we have investigated how the yeast helicase, Mph1, affects DNA repair at both DSBs and telomeres. We have found that overexpressed Mph1 strongly inhibits BIR at internal DSBs however allows it to proceed at telomeres. Furthermore, while overexpressed Mph1 potently inhibits NHEJ at telomeres it has no effect on NHEJ at DSBs within the chromosome. At telomeres Mph1 is able to promote telomere uncapping and the accumulation of ssDNA, which results in premature senescence in the absence of telomerase. We propose that Mph1 is able to direct repair towards HR (thereby inhibiting NHEJ) at telomeres by remodeling them into a nuclease-sensitive structure, which promotes the accumulation of a recombinogenic ssDNA intermediate. We thus put forward that Mph1 is a double-edge sword at the telomere, it prevents NHEJ, but promotes senescence in cells with dysfunctional telomeres by increasing the levels of ssDNA.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Conceived and designed the experiments: SLG BL. Performed the experiments: SLG. Analyzed the data: SLG BL. Contributed reagents/materials/analysis tools: SLG BL. Wrote the paper: SLG BL.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0042028