The Mechanisms Underlying α-Amanitin Resistance in Drosophila melanogaster: A Microarray Analysis

The rapid evolution of toxin resistance in animals has important consequences for the ecology of species and our economy. Pesticide resistance in insects has been a subject of intensive study; however, very little is known about how Drosophila species became resistant to natural toxins with ecologic...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 9; no. 4; p. e93489
Main Authors Mitchell, Chelsea L., Saul, Michael C., Lei, Liang, Wei, Hairong, Werner, Thomas
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.04.2014
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The rapid evolution of toxin resistance in animals has important consequences for the ecology of species and our economy. Pesticide resistance in insects has been a subject of intensive study; however, very little is known about how Drosophila species became resistant to natural toxins with ecological relevance, such as α-amanitin that is produced in deadly poisonous mushrooms. Here we performed a microarray study to elucidate the genes, chromosomal loci, molecular functions, biological processes, and cellular components that contribute to the α-amanitin resistance phenotype in Drosophila melanogaster. We suggest that toxin entry blockage through the cuticle, phase I and II detoxification, sequestration in lipid particles, and proteolytic cleavage of α-amanitin contribute in concert to this quantitative trait. We speculate that the resistance to mushroom toxins in D. melanogaster and perhaps in mycophagous Drosophila species has evolved as cross-resistance to pesticides, other xenobiotic substances, or environmental stress factors.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
Conceived and designed the experiments: CM TW. Performed the experiments: CM TW. Analyzed the data: CM MS LL HW TW. Contributed reagents/materials/analysis tools: MS HW TW. Wrote the paper: CM MS LL HW TW.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0093489