Molecular characterisation of the synovial fluid microbiome in rheumatoid arthritis patients and healthy control subjects

The presence and identity of bacterial and fungal DNA in the synovial fluid of rheumatoid arthritis (RA) patients and healthy control subjects was investigated through amplification and sequencing of the bacterial 16S rRNA gene and fungal internal transcribed spacer region 2 respectively. Synovial f...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 14; no. 11; p. e0225110
Main Authors Hammad, Dargham Bayan Mohsen, Liyanapathirana, Veranja, Tonge, Daniel Paul
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 21.11.2019
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The presence and identity of bacterial and fungal DNA in the synovial fluid of rheumatoid arthritis (RA) patients and healthy control subjects was investigated through amplification and sequencing of the bacterial 16S rRNA gene and fungal internal transcribed spacer region 2 respectively. Synovial fluid concentrations of the cytokines IL-6, IL-17A, IL22 and IL-23 were determined by ELISA. Bacterial 16S rRNA genes were detected in 87.5% RA patients, and all healthy control subjects. At the phylum level, the microbiome was predominated by Proteobacteria (Control = 83.5%, RA = 79.3%) and Firmicutes (Control = 16.1%, RA = 20.3%), and to a much lesser extent, Actinobacteria (Control = 0.2%, RA = 0.3%) and Bacteroidetes (Control = 0.1%, RA = 0.1%). Fungal DNA was identified in 75% RA samples, and 88.8% healthy controls. At the phylum level, synovial fluid was predominated by members of the Basidiomycota (Control = 53.9%, RA = 46.9%) and Ascomycota (Control = 35.1%, RA = 50.8%) phyla. Statistical analysis revealed key taxa that were differentially present or abundant dependent on disease status. This study reports the presence of a synovial fluid microbiome, and determines that this is modulated by disease status (RA) as are other classical microbiome niches.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0225110