Characterization of Enterococcus faecalis phage IME-EF1 and its endolysin

Enterococcus faecalis is increasingly becoming an important nosocomial infection opportunistic pathogen. E. faecalis can easily obtain drug resistance, making it difficult to be controlled in clinical settings. Using bacteriophage as an alternative treatment to drug-resistant bacteria has been revit...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 8; no. 11; p. e80435
Main Authors Zhang, Wenhui, Mi, Zhiqiang, Yin, Xiuyun, Fan, Hang, An, Xiaoping, Zhang, Zhiyi, Chen, Jiankui, Tong, Yigang
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 13.11.2013
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Enterococcus faecalis is increasingly becoming an important nosocomial infection opportunistic pathogen. E. faecalis can easily obtain drug resistance, making it difficult to be controlled in clinical settings. Using bacteriophage as an alternative treatment to drug-resistant bacteria has been revitalized recently, especially for fighting drug-resistant bacteria. In this research, an E. faecalis bacteriophage named IME-EF1 was isolated from hospital sewage. Whole genomic sequence analysis demonstrated that the isolated IME-EF1 belong to the Siphoviridae family, and has a linear double-stranded DNA genome consisting of 57,081 nucleotides. The IME-EF1 genome has a 40.04% G+C content and contains 98 putative coding sequences. In addition, IME-EF1 has an isometric head with a width of 35 nm to 60 nm and length of 75 nm to 90 nm, as well as morphology resembling a tadpole. IME-EF1 can adsorb to its host cells within 9 min, with an absorbance rate more than 99% and a latent period time of 25 min. The endolysin of IME-EF1 contains a CHAP domain in its N-terminal and has a wider bactericidal spectrum than its parental bacteriophage, including 2 strains of vancomycin-resistant E. faecalis. When administrated intraperitoneally, one dose of IME-EF1 or its endolysin can reduce bacterial count in the blood and protected the mice from a lethal challenge of E. faecalis, with a survival rate of 60% or 80%, respectively. Although bacteriophage could rescue mice from bacterial challenge, to the best of our knowledge, this study further supports the potential function of bacteriophage in dealing with E. faecalis infection in vivo. The results also indicated that the newly isolated bacteriophage IME-EF1 enriched the arsenal library of lytic E. faecalis bacteriophages and presented another choice for phage therapy in the future.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Conceived and designed the experiments: YGT. Performed the experiments: WHZ ZQM. Analyzed the data: XPA HF ZYZ. Contributed reagents/materials/analysis tools: JKC XYY. Wrote the manuscript: YGT ZQM.
Competing Interests: the authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0080435