Unexpected High Diversity of Galling Insects in the Amazonian Upper Canopy: The Savanna Out There
A relatively large number of studies reassert the strong relationship between galling insect diversity and extreme hydric and thermal status in some habitats, and an overall pattern of a greater number of galling species in the understory of scleromorphic vegetation. We compared galling insect diver...
Saved in:
Published in | PloS one Vol. 9; no. 12; p. e114986 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
31.12.2014
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A relatively large number of studies reassert the strong relationship between galling insect diversity and extreme hydric and thermal status in some habitats, and an overall pattern of a greater number of galling species in the understory of scleromorphic vegetation. We compared galling insect diversity in the forest canopy and its relationship with tree richness among upland terra firme, várzea, and igapó floodplains in Amazonia, Brazil. The soils of these forest types have highly different hydric and nutritional status. Overall, we examined the upper layer of 1,091 tree crowns. Galling species richness and abundance were higher in terra firme forests compared to várzea and igapó forests. GLM-ANCOVA models revealed that the number of tree species sampled in each forest type was determinant in the gall-forming insect diversity. The ratio between galling insect richness and number of tree species sampled (GIR/TSS ratio) was higher in the terra firme forest and in seasonally flooded igapó, while the várzea presented the lowest GIR/TSS ratio. In this study, we recorded unprecedented values of galling species diversity and abundance per sampling point. The GIR/TSS ratio from várzea was approximately 2.5 times higher than the highest value of this ratio ever reported in the literature. Based on this fact, we ascertained that várzea and igapó floodplain forests (with lower GIA and GIR), together with the speciose terra firme galling community emerge as the gall diversity apex landscape among all biogeographic regions already investigated. Contrary to expectation, our results also support the "harsh environment hypothesis", and unveil the Amazonian upper canopy as similar to Mediterranean vegetation habitats, hygrothermically stressed environments with leaf temperature at lethal limits and high levels of leaf sclerophylly. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no competing interests exist. Conceived and designed the experiments: GRJ EMV GWF PWP. Performed the experiments: GRJ. Analyzed the data: EMV GRJ. Contributed reagents/materials/analysis tools: GRJ EMV GWF PWP. Wrote the paper: GRJ EMV GWF PWP. |
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0114986 |