Does Occupational Exposure to Solvents and Pesticides in Association with Glutathione S-Transferase A1, M1, P1, and T1 Polymorphisms Increase the Risk of Bladder Cancer? The Belgrade Case-Control Study

We investigated the role of the glutathione S-transferase A1, M1, P1 and T1 gene polymorphisms and potential effect modification by occupational exposure to different chemicals in Serbian bladder cancer male patients. A hospital-based case-control study of bladder cancer in men comprised 143 histolo...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 9; no. 6; p. e99448
Main Authors Matic, Marija G., Coric, Vesna M., Savic-Radojevic, Ana R., Bulat, Petar V., Pljesa-Ercegovac, Marija S., Dragicevic, Dejan P., Djukic, Tatjana I., Simic, Tatjana P., Pekmezovic, Tatjana D.
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 10.06.2014
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We investigated the role of the glutathione S-transferase A1, M1, P1 and T1 gene polymorphisms and potential effect modification by occupational exposure to different chemicals in Serbian bladder cancer male patients. A hospital-based case-control study of bladder cancer in men comprised 143 histologically confirmed cases and 114 age-matched male controls. Deletion polymorphism of glutathione S-transferase M1 and T1 was identified by polymerase chain reaction method. Single nucleotide polymorphism of glutathione S-transferase A1 and P1 was identified by restriction fragment length polymorphism method. As a measure of effect size, odds ratio (OR) with corresponding 95% confidence interval (95%CI) was calculated. The glutathione S-transferase A1, T1 and P1 genotypes did not contribute independently toward the risk of bladder cancer, while the glutathione S-transferase M1-null genotype was overrepresented among cases (OR = 2.1, 95% CI = 1.1-4.2, p = 0.032). The most pronounced effect regarding occupational exposure to solvents and glutathione S-transferase genotype on bladder cancer risk was observed for the low activity glutathione S-transferase A1 genotype (OR = 9.2, 95% CI = 2.4-34.7, p = 0.001). The glutathione S-transferase M1-null genotype also enhanced the risk of bladder cancer among subjects exposed to solvents (OR = 6,5, 95% CI = 2.1-19.7, p = 0.001). The risk of bladder cancer development was 5.3-fold elevated among glutathione S-transferase T1-active patients exposed to solvents in comparison with glutathione S-transferase T1-active unexposed patients (95% CI = 1.9-15.1, p = 0.002). Moreover, men with glutathione S-transferase T1-active genotype exposed to pesticides exhibited 4.5 times higher risk in comparison with unexposed glutathione S-transferase T1-active subjects (95% CI = 0.9-22.5, p = 0.067). Null or low-activity genotypes of the glutathione S-transferase A1, T1, and P1 did not contribute independently towards the risk of bladder cancer in males. However, in association with occupational exposure, low activity glutathione S-transferase A1 and glutathione S-transferase M1-null as well as glutathione S-transferase T1-active genotypes increase individual susceptibility to bladder cancer.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
Conceived and designed the experiments: MGM VMC TPS TDP. Performed the experiments: MGM VMC TID. Analyzed the data: MGM VMC ARSR MSPE TID TPS TDP. Contributed reagents/materials/analysis tools: PVB DPD. Wrote the paper: MGM VMC ARSR MSPE TPS TDP.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0099448