Non-silent story on synonymous sites in voltage-gated ion channel genes

Synonymous mutations are usually referred to as "silent", but increasing evidence shows that they are not neutral in a wide range of organisms. We looked into the relationship between synonymous codon usage bias and residue importance of voltage-gated ion channel proteins in mice, rats, an...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 7; no. 10; p. e48541
Main Authors Zhou, Tong, Ko, Eun A, Gu, Wanjun, Lim, Inja, Bang, Hyoweon, Ko, Jae-Hong
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 31.10.2012
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Synonymous mutations are usually referred to as "silent", but increasing evidence shows that they are not neutral in a wide range of organisms. We looked into the relationship between synonymous codon usage bias and residue importance of voltage-gated ion channel proteins in mice, rats, and humans. We tested whether translationally optimal codons are associated with transmembrane or channel-forming regions, i.e., the sites that are particularly likely to be involved in the closing and opening of an ion channel. Our hypothesis is that translationally optimal codons are preferred at the sites within transmembrane domains or channel-forming regions in voltage-gated ion channel genes to avoid mistranslation-induced protein misfolding or loss-of-function. Using the Mantel-Haenszel procedure, which applies to categorical data, we found that translationally optimal codons are more likely to be used at transmembrane residues and the residues involved in channel-forming. We also found that the conservation level at synonymous sites in the transmembrane region is significantly higher than that in the non-transmembrane region. This study provides evidence that synonymous sites in voltage-gated ion channel genes are not neutral. Silent mutations at channel-related sites may lead to dysfunction of the ion channel.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Conceived and designed the experiments: TZ EAK WG IL HWB JHK. Performed the experiments: TZ EAK. Analyzed the data: TZ EAK. Wrote the paper: TZ EAK WG IL HWB JHK.
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0048541