Key Role of ROS in the Process of 15-Lipoxygenase/15-Hydroxyeicosatetraenoiccid-Induced Pulmonary Vascular Remodeling in Hypoxia Pulmonary Hypertension

We previously reported that 15-lipoxygenase (15-LO) and its metabolite 15-hydroxyeicosatetraenoic acid (15-HETE) were up-regulated in pulmonary arterial cells from both pulmonary artery hypertension patients and hypoxic rats and that these factors mediated the progression of pulmonary hypertension (...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 11; no. 2; p. e0149164
Main Authors Li, Qian, Mao, Min, Qiu, Yanli, Liu, Gaofeng, Sheng, Tingting, Yu, Xiufeng, Wang, Shuang, Zhu, Daling
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 12.02.2016
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We previously reported that 15-lipoxygenase (15-LO) and its metabolite 15-hydroxyeicosatetraenoic acid (15-HETE) were up-regulated in pulmonary arterial cells from both pulmonary artery hypertension patients and hypoxic rats and that these factors mediated the progression of pulmonary hypertension (PH) by affecting the proliferation and apoptosis of pulmonary arterial (PA) cells. However, the underlying mechanisms of the remodeling induced by 15-HETE have remained unclear. As reactive oxygen species (ROS) and 15-LO are both induced by hypoxia, it is possible that ROS are involved in the events of hypoxia-induced 15-LO expression that lead to PH. We employed immunohistochemistry, tube formation assays, bromodeoxyuridine (BrdU) incorporation assays, and cell cycle analyses to explore the role of ROS in the process of 15-HETE-mediated hypoxic pulmonary hypertension (HPH). We found that exogenous 15-HETE facilitated the generation of ROS and that this effect was mainly localized to mitochondria. In particular, the mitochondrial electron transport chain and nicotinamide-adenine dinucleotide phosphate oxidase 4 (Nox4) were responsible for the significant 15-HETE-stimulated increase in ROS production. Moreover, ROS induced by 15-HETE stimulated endothelial cell (EC) migration and promoted pulmonary artery smooth muscle cell (PASMC) proliferation under hypoxia via the p38 MAPK pathway. These results indicated that 15-HETE-regulated ROS mediated hypoxia-induced pulmonary vascular remodeling (PVR) via the p38 MAPK pathway.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
Conceived and designed the experiments: DZ QL. Performed the experiments: QL MM YQ GL. Analyzed the data: QL TS XY SW. Contributed reagents/materials/analysis tools: QL MM YQ TS. Wrote the paper: QL MM YQ. Revised the paper: DZ. Discussed the results and commented on the manuscript: DZ QL MM YQ GL TS XY SW.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0149164