Maternal Obesity Affects Fetal Neurodevelopmental and Metabolic Gene Expression: A Pilot Study

One in three pregnant women in the United States is obese. Their offspring are at increased risk for neurodevelopmental and metabolic morbidity. Underlying molecular mechanisms are poorly understood. We performed a global gene expression analysis of mid-trimester amniotic fluid cell-free fetal RNA i...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 9; no. 2; p. e88661
Main Authors Edlow, Andrea G., Vora, Neeta L., Hui, Lisa, Wick, Heather C., Cowan, Janet M., Bianchi, Diana W.
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 18.02.2014
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:One in three pregnant women in the United States is obese. Their offspring are at increased risk for neurodevelopmental and metabolic morbidity. Underlying molecular mechanisms are poorly understood. We performed a global gene expression analysis of mid-trimester amniotic fluid cell-free fetal RNA in obese versus lean pregnant women. This prospective pilot study included eight obese (BMI≥30) and eight lean (BMI<25) women undergoing clinically indicated mid-trimester genetic amniocentesis. Subjects were matched for gestational age and fetal sex. Fetuses with abnormal karyotype or structural anomalies were excluded. Cell-free fetal RNA was extracted from amniotic fluid and hybridized to whole genome expression arrays. Genes significantly differentially regulated in 8/8 obese-lean pairs were identified using paired t-tests with the Benjamini-Hochberg correction (false discovery rate of <0.05). Biological interpretation was performed with Ingenuity Pathway Analysis and the BioGPS gene expression atlas. In fetuses of obese pregnant women, 205 genes were significantly differentially regulated. Apolipoprotein D, a gene highly expressed in the central nervous system and integral to lipid regulation, was the most up-regulated gene (9-fold). Apoptotic cell death was significantly down-regulated, particularly within nervous system pathways involving the cerebral cortex. Activation of the transcriptional regulators estrogen receptor, FOS, and STAT3 was predicted in fetuses of obese women, suggesting a pro-estrogenic, pro-inflammatory milieu. Maternal obesity affects fetal neurodevelopmental and metabolic gene expression as early as the second trimester. These findings may have implications for postnatal neurodevelopmental and metabolic abnormalities described in the offspring of obese women.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
Current address: Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, University of North Carolina-Chapel Hill, NC, United States of America
Current address: Department of Perinatal Medicine, Mercy Hospital for Women, Heidelberg, VIC, Australia
Conceived and designed the experiments: AGE NLV DWB. Performed the experiments: AGE NLV. Analyzed the data: AGE HCW DWB. Contributed reagents/materials/analysis tools: AGE NLV LH JMC DWB. Wrote the paper: AGE LH DWB. Revised the manuscript critically for important intellectual content: AGE NLV LH HCW JMC DWB.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0088661