A multi-GPU accelerated virtual-reality interaction simulation framework

In this paper, we put forward a real-time multiple GPUs (multi-GPU) accelerated virtual-reality interaction simulation framework where the reconstructed objects from camera images interact with virtual deformable objects. Firstly, based on an extended voxel-based visual hull (VbVH) algorithm, we des...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 14; no. 4; p. e0214852
Main Authors Shao, Xuqiang, Xu, Weifeng, Lin, Lina, Zhang, Fengquan
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 11.04.2019
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, we put forward a real-time multiple GPUs (multi-GPU) accelerated virtual-reality interaction simulation framework where the reconstructed objects from camera images interact with virtual deformable objects. Firstly, based on an extended voxel-based visual hull (VbVH) algorithm, we design an image-based 3D reconstruction platform for real objects. Then, an improved hybrid deformation model, which couples the geometry constrained fast lattice shape matching method (FLSM) and total Lagrangian explicit dynamics (TLED) algorithm, is proposed to achieve efficient and stable simulation of the virtual objects' elastic deformations. Finally, one-way virtual-reality interactions including soft tissues' virtual cutting with bleeding effects are successfully simulated. Moreover, with the purpose of significantly improving the computational efficiency of each time step, we propose an entire multi-GPU implementation method of the framework using compute unified device architecture (CUDA). The experiment results demonstrate that our multi-GPU accelerated virtual-reality interaction framework achieves real-time performance under the moderate calculation scale, which is a new effective 3D interaction technique for virtual reality applications.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0214852