clusTransition: An R package for monitoring transition in cluster solutions of temporal datasets

Clustering analysis' primary purpose is to divide a dataset into a finite number of segments based on the similarities between items. In recent years, a significant amount of study has focused on the spatio-temporal aspects of clustering. However, clusters are no longer regarded as static objec...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 17; no. 12; p. e0278146
Main Authors Atif, Muhammad, Leisch, Friedrich
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 15.12.2022
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Clustering analysis' primary purpose is to divide a dataset into a finite number of segments based on the similarities between items. In recent years, a significant amount of study has focused on the spatio-temporal aspects of clustering. However, clusters are no longer regarded as static objects since changes influence them in the underlying population. This paper describes an R package implementing the MONIC framework for tracing the evolution of clusters extracted from temporal datasets. The name of the package is clusTransition, which stands for Cluster Transition. The algorithm is based on re-clustering cumulative datasets that evolve at successive time-points and monitoring the transitions experienced by the clusters in these clustering solutions. This paper's contribution is to demonstrate how the package clusTransition is developed in the R programming language, and its workflow is discussed using hypothetical and real-life datasets.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0278146