Power fingerprint identification based on the improved V-I trajectory with color encoding and transferred CBAM-ResNet

In power fingerprint identification, feature information is insufficient when using a single feature to identify equipment, and small load data of specific customers, difficult to meet the refined equipment classification needs. A power fingerprint identification based on the improved voltage-curren...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 18; no. 2; p. e0281482
Main Authors Lin, Lin, Zhang, Jie, Gao, Xu, Shi, Jiancheng, Chen, Cheng, Huang, Nantian
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 09.02.2023
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In power fingerprint identification, feature information is insufficient when using a single feature to identify equipment, and small load data of specific customers, difficult to meet the refined equipment classification needs. A power fingerprint identification based on the improved voltage-current(V-I) trajectory with color encoding and transferred CBAM-ResNet34 is proposed. First, the current, instantaneous power, and trajectory momentum information are added to the original V-I trajectory image using color coding to obtain a color V-I trajectory image. Then, the ResNet34 model was pre-trained using the ImageNet dataset and a new fully-connected layer meeting the device classification goal was used to replace the fully-connected layer of ResNet34. The Convolutional Block Attention Module (CBAM) was added to each residual structure module of ResNet34. Finally, Class-Balanced (CB) loss is introduced to reweight the Softmax cross-entropy (SM-CE) loss function to solve the problem of data imbalance in V-I trajectory identification. All parameters are retrained to extract features from the color V-I trajectory images for device classification. The experimental results on the imbalanced PLAID dataset verify that the method in this paper has better classification capability in small sample imbalanced datasets. The experimental results show that the method effectively improves the identification accuracy by 4.4% and reduces the training time of the model by 14 minutes compared with the existing methods, which meets the accuracy requirements of fine-grained power fingerprint identification.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0281482