Advanced arithmetic optimization algorithm for solving mechanical engineering design problems

The distributive power of the arithmetic operators: multiplication, division, addition, and subtraction, gives the arithmetic optimization algorithm (AOA) its unique ability to find the global optimum for optimization problems used to test its performance. Several other mathematical operators exist...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 16; no. 8; p. e0255703
Main Authors Agushaka, Jeffrey O., Ezugwu, Absalom E.
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 24.08.2021
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0255703

Cover

More Information
Summary:The distributive power of the arithmetic operators: multiplication, division, addition, and subtraction, gives the arithmetic optimization algorithm (AOA) its unique ability to find the global optimum for optimization problems used to test its performance. Several other mathematical operators exist with the same or better distributive properties, which can be exploited to enhance the performance of the newly proposed AOA. In this paper, we propose an improved version of the AOA called nAOA algorithm, which uses the high-density values that the natural logarithm and exponential operators can generate, to enhance the exploratory ability of the AOA. The addition and subtraction operators carry out the exploitation. The candidate solutions are initialized using the beta distribution, and the random variables and adaptations used in the algorithm have beta distribution. We test the performance of the proposed nAOA with 30 benchmark functions (20 classical and 10 composite test functions) and three engineering design benchmarks. The performance of nAOA is compared with the original AOA and nine other state-of-the-art algorithms. The nAOA shows efficient performance for the benchmark functions and was second only to GWO for the welded beam design (WBD), compression spring design (CSD), and pressure vessel design (PVD).
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0255703