CSF Proteomics Identifies Specific and Shared Pathways for Multiple Sclerosis Clinical Subtypes

Multiple sclerosis (MS) is an immune-mediated, neuro-inflammatory, demyelinating and neurodegenerative disease of the central nervous system (CNS) with a heterogeneous clinical presentation and course. There is a remarkable phenotypic heterogeneity in MS, and the molecular mechanisms underlying it r...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 10; no. 5; p. e0122045
Main Authors Avsar, Timucin, Durası, İlknur Melis, Uygunoğlu, Uğur, Tütüncü, Melih, Demirci, Nuri Onat, Saip, Sabahattin, Sezerman, O Uğur, Siva, Aksel, Tahir Turanlı, Eda
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 05.05.2015
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Multiple sclerosis (MS) is an immune-mediated, neuro-inflammatory, demyelinating and neurodegenerative disease of the central nervous system (CNS) with a heterogeneous clinical presentation and course. There is a remarkable phenotypic heterogeneity in MS, and the molecular mechanisms underlying it remain unknown. We aimed to investigate further the etiopathogenesis related molecular pathways in subclinical types of MS using proteomic and bioinformatics approaches in cerebrospinal fluids of patients with clinically isolated syndrome, relapsing remitting MS and progressive MS (n=179). Comparison of disease groups with controls revealed a total of 151 proteins that are differentially expressed in clinically different MS subtypes. KEGG analysis using PANOGA tool revealed the disease related pathways including aldosterone-regulated sodium reabsorption (p=8.02x10-5) which is important in the immune cell migration, renin-angiotensin (p=6.88x10-5) system that induces Th17 dependent immunity, notch signaling (p=1.83x10-10) pathway indicating the activated remyelination and vitamin digestion and absorption pathways (p=1.73x10-5). An emerging theme from our studies is that whilst all MS clinical forms share common biological pathways, there are also clinical subtypes specific and pathophysiology related pathways which may have further therapeutic implications.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
Conceived and designed the experiments: TA IMD UU MT NOD SS OUS AS ETT. Performed the experiments: TA IMD UU. Analyzed the data: TA IMD UU OUS AS ETT. Contributed reagents/materials/analysis tools: TA IMD UU MT NOD SS OUS AS ETT. Wrote the paper: TA IMD UU MT OUS AS ETT.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0122045