Macrophage polarization and acceleration of atherosclerotic plaques in a swine model

Atherosclerosis is a well-known cause of cardiovascular disease and is associated with a variety of inflammatory reactions. However, an adequate large-animal model of advanced plaques to investigate the pathophysiology of atherosclerosis is lacking. Therefore, we developed and assessed a swine model...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 13; no. 3; p. e0193005
Main Authors Lee, Seul-Gee, Oh, Jaewon, Bong, Sung-Kyung, Kim, Jung-Sun, Park, Seil, Kim, Sehoon, Park, Sungha, Lee, Sang-Hak, Jang, Yangsoo
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 21.03.2018
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Atherosclerosis is a well-known cause of cardiovascular disease and is associated with a variety of inflammatory reactions. However, an adequate large-animal model of advanced plaques to investigate the pathophysiology of atherosclerosis is lacking. Therefore, we developed and assessed a swine model of advanced atherosclerotic plaques with macrophage polarization. Mini-pigs were fed a 2% high-cholesterol diet for 7 weeks followed by withdrawal periods of 4 weeks. Endothelial denudation was performed using a balloon catheter on 32 coronary and femoral arteries of 8 mini-pigs. Inflammatory proteins (high-mobility group box 1 [HMGB1] or tumor necrosis factor alpha (TNF-α) were injected via a micro-infusion catheter into the vessel wall. All lesions were assessed with angiography and optical coherence tomography and all tissues were harvested for histological evaluation. Intima/plaque area was significantly higher in the HMGB1- and TNF-α-injected groups compared to the saline-injected group (p = 0.002). CD68 antibody detection and polarization of M1 macrophages significantly increased in the inflammatory protein-injected groups (p<0.001). In addition, advanced atherosclerotic plaques were observed more in the inflammatory protein-injected groups compared with the control upon histologic evaluation. Direct injection of inflammatory proteins was associated with acceleration of atherosclerotic plaque formation with M1 macrophage polarization. Therefore, direct delivery of inflammatory proteins may induce a pro-inflammatory response, providing a possible strategy for development of an advanced atherosclerotic large-animal model in a relatively short time period.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0193005