Shade tree diversity, cocoa pest damage, yield compensating inputs and farmers' net returns in West Africa

Cocoa agroforests can significantly support biodiversity, yet intensification of farming practices is degrading agroforestry habitats and compromising ecosystem services such as biological pest control. Effective conservation strategies depend on the type of relationship between agricultural matrix,...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 8; no. 3; p. e56115
Main Authors Bisseleua Daghela, Hervé Bertin, Bisseleua, Hervé Bertin Daghela, Fotio, Daniel, Yede, Missoup, Alain Didier, Vidal, Stefan
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 08.03.2013
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Cocoa agroforests can significantly support biodiversity, yet intensification of farming practices is degrading agroforestry habitats and compromising ecosystem services such as biological pest control. Effective conservation strategies depend on the type of relationship between agricultural matrix, biodiversity and ecosystem services, but to date the shape of this relationship is unknown. We linked shade index calculated from eight vegetation variables, with insect pests and beneficial insects (ants, wasps and spiders) in 20 cocoa agroforests differing in woody and herbaceous vegetation diversity. We measured herbivory and predatory rates, and quantified resulting increases in cocoa yield and net returns. We found that number of spider webs and wasp nests significantly decreased with increasing density of exotic shade tree species. Greater species richness of native shade tree species was associated with a higher number of wasp nests and spider webs while species richness of understory plants did not have a strong impact on these beneficial species. Species richness of ants, wasp nests and spider webs peaked at higher levels of plant species richness. The number of herbivore species (mirid bugs and cocoa pod borers) and the rate of herbivory on cocoa pods decreased with increasing shade index. Shade index was negatively related to yield, with yield significantly higher at shade and herb covers<50%. However, higher inputs in the cocoa farms do not necessarily result in a higher net return. In conclusion, our study shows the importance of a diverse shade canopy in reducing damage caused by cocoa pests. It also highlights the importance of conservation initiatives in tropical agroforestry landscapes.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
Helped to analyze the relationship between shade cover and environmental factors and other confounding variables and to prepare responses to reviewers' comments: DF. Conceived and designed the experiments: HBDB YY ADM SV. Performed the experiments: HBDB YY ADM. Analyzed the data: HBDB SV. Contributed reagents/materials/analysis tools: HBDB ADM SV. Wrote the paper: HBDB ADM SV.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0056115