Altered Resting-State Amygdala Functional Connectivity after 36 Hours of Total Sleep Deprivation

Recent neuroimaging studies have identified a potentially critical role of the amygdala in disrupted emotion neurocircuitry in individuals after total sleep deprivation (TSD). However, connectivity between the amygdala and cerebral cortex due to TSD remains to be elucidated. In this study, we used r...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 9; no. 11; p. e112222
Main Authors Shao, Yongcong, Lei, Yu, Wang, Lubin, Zhai, Tianye, Jin, Xiao, Ni, Wei, Yang, Yue, Tan, Shuwen, Wen, Bo, Ye, Enmao, Yang, Zheng
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 05.11.2014
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Recent neuroimaging studies have identified a potentially critical role of the amygdala in disrupted emotion neurocircuitry in individuals after total sleep deprivation (TSD). However, connectivity between the amygdala and cerebral cortex due to TSD remains to be elucidated. In this study, we used resting-state functional MRI (fMRI) to investigate the functional connectivity changes of the basolateral amygdala (BLA) and centromedial amygdala (CMA) in the brain after 36 h of TSD. Fourteen healthy adult men aged 25.9 ± 2.3 years (range, 18-28 years) were enrolled in a within-subject crossover study. Using the BLA and CMA as separate seed regions, we examined resting-state functional connectivity with fMRI during rested wakefulness (RW) and after 36 h of TSD. TSD resulted in a significant decrease in the functional connectivity between the BLA and several executive control regions (left dorsolateral prefrontal cortex [DLPFC], right dorsal anterior cingulate cortex [ACC], right inferior frontal gyrus [IFG]). Increased functional connectivity was found between the BLA and areas including the left posterior cingulate cortex/precuneus (PCC/PrCu) and right parahippocampal gyrus. With regard to CMA, increased functional connectivity was observed with the rostral anterior cingulate cortex (rACC) and right precentral gyrus. These findings demonstrate that disturbance in amygdala related circuits may contribute to TSD psychophysiology and suggest that functional connectivity studies of the amygdala during the resting state may be used to discern aberrant patterns of coupling within these circuits after TSD.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
Conceived and designed the experiments: YS ZY EY. Performed the experiments: YS EY XJ BW WN. Analyzed the data: YL LW YY. Wrote the paper: YS LW YL TZ ST.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0112222