PDX-1 is a therapeutic target for pancreatic cancer, insulinoma and islet neoplasia using a novel RNA interference platform

Pancreatic and duodenal homeobox-1 (PDX-1) is a transcription factor that regulates insulin expression and islet maintenance in the adult pancreas. Our recent studies demonstrate that PDX-1 is an oncogene for pancreatic cancer and is overexpressed in pancreatic cancer. The purpose of this study was...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 7; no. 8; p. e40452
Main Authors Liu, Shi-He, Rao, Donald D, Nemunaitis, John, Senzer, Neil, Zhou, Guisheng, Dawson, David, Gingras, Marie-Claude, Wang, Zhaohui, Gibbs, Richard, Norman, Michael, Templeton, Nancy S, Demayo, Francesco J, O'Malley, Bert, Sanchez, Robbi, Fisher, William E, Brunicardi, F Charles
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 08.08.2012
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Pancreatic and duodenal homeobox-1 (PDX-1) is a transcription factor that regulates insulin expression and islet maintenance in the adult pancreas. Our recent studies demonstrate that PDX-1 is an oncogene for pancreatic cancer and is overexpressed in pancreatic cancer. The purpose of this study was to demonstrate that PDX-1 is a therapeutic target for both hormonal symptoms and tumor volume in mouse models of pancreatic cancer, insulinoma and islet neoplasia. Immunohistochemistry of human pancreatic and islet neoplasia specimens revealed marked PDX-1 overexpression, suggesting PDX-1 as a "drugable" target within these diseases. To do so, a novel RNA interference effector platform, bifunctional shRNA(PDX-1), was developed and studied in mouse and human cell lines as well as in mouse models of pancreatic cancer, insulinoma and islet neoplasia. Systemic delivery of bi-shRNA(humanPDX-1) lipoplexes resulted in marked reduction of tumor volume and improved survival in a human pancreatic cancer xenograft mouse model. bi-shRNA(mousePDX-1) lipoplexes prevented death from hyperinsulinemia and hypoglycemia in an insulinoma mouse model. shRNA(mousePDX-1) lipoplexes reversed hyperinsulinemia and hypoglycemia in an immune-competent mouse model of islet neoplasia. PDX-1 was overexpressed in pancreatic neuroendocrine tumors and nesidioblastosis. These data demonstrate that PDX-1 RNAi therapy controls hormonal symptoms and tumor volume in mouse models of pancreatic cancer, insulinoma and islet neoplasia, therefore, PDX-1 is a potential therapeutic target for these pancreatic diseases.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Conceived and designed the experiments: FCB. Performed the experiments: S-HL GZ ZW MN RS. Analyzed the data: S-HL JN M-CG ZW FCB. Contributed reagents/materials/analysis tools: MN DR JN DD NT FD WF. Wrote the paper: FCB S-HL DR JM NS RG FD BO WF.
Competing Interests: D. Rao, N. Senzer, Z. Wang and N. Templeton are employed by Gradalis, Inc. The following authors are shareholders in Gradalis, Inc.: N. Senzer, F.C. Brunicardi, D. Rao and J. Nemunaitis. There are no patents, products in development or marketed products to declare. This does not alter the authors' adherence to all the PLoS ONE policies on sharing data and materials, as detailed online in the guide for authors.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0040452