Automatic intra-subject registration and fusion of multimodal cochlea 3D clinical images

The postoperative imaging assessment of Cochlear Implant (CI) patients is imperative. The main obstacle is that Magnetic Resonance imaging (MR) is contraindicated or hindered by significant artefacts in most cases with CIs. This study describes an automatic cochlear image registration and fusion met...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 17; no. 3; p. e0264449
Main Authors Al-Dhamari, Ibraheem, Helal, Rania, Morozova, Olesia, Abdelaziz, Tougan, Jacob, Roland, Paulus, Dietrich, Waldeck, Stephan
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 02.03.2022
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The postoperative imaging assessment of Cochlear Implant (CI) patients is imperative. The main obstacle is that Magnetic Resonance imaging (MR) is contraindicated or hindered by significant artefacts in most cases with CIs. This study describes an automatic cochlear image registration and fusion method that aims to help radiologists and surgeons to process pre-and postoperative 3D multimodal imaging studies in cochlear implant (CI) patients. We propose a new registration method, Automatic Cochlea Image Registration (ACIR-v3), which uses a stochastic quasi-Newton optimiser with a mutual information metric to find 3D rigid transform parameters for registration of preoperative and postoperative CI imaging. The method was tested against a clinical cochlear imaging dataset that contains 131 multimodal 3D imaging studies of 41 CI patients with preoperative and postoperative images. The preoperative images were MR, Multidetector Computed Tomography (MDCT) or Cone Beam Computed Tomography (CBCT) while the postoperative were CBCT. The average root mean squared error of ACIR-v3 method was 0.41 mm with a standard deviation of 0.39 mm. The results were evaluated quantitatively using the mean squared error of two 3D landmarks located manually by two neuroradiology experts in each image and compared to other previously known registration methods, e.g. Fast Preconditioner Stochastic Gradient Descent, in terms of accuracy and speed. Our method, ACIR-v3, produces high resolution images in the postoperative stage and allows for visualisation of the accurate anatomical details of the MRI with the absence of significant metallic artefacts. The method is implemented as an open-source plugin for 3D Slicer tool.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0264449