Study the effect of various wash-coated metal oxides over synthesized carbon nanofibers coated monolith substrates

In this research work, carbon nanofibers (CNFs) were synthesized on honeycomb monolith substrates using injection chemical vapor deposition (ICVD) technique. The effect of various wash-coated materials and catalyst promoter on the growth rate of CNFs on monolith substrates were examined. The charact...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 14; no. 7; p. e0219936
Main Authors Malekbala, Mohamad Rasool, Soltani, Soroush, Abdul Rashid, Suraya, Abdullah, Luqman Chuah, Choong, Thomas Shean Yaw
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 31.07.2019
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this research work, carbon nanofibers (CNFs) were synthesized on honeycomb monolith substrates using injection chemical vapor deposition (ICVD) technique. The effect of various wash-coated materials and catalyst promoter on the growth rate of CNFs on monolith substrates were examined. The characteristics of the synthesized CNFs-coated monolith composites were examined using Raman spectroscopy, Brunauer-Emmett-Teller (BET), thermogravimetric analysis (TGA), field emission scanning electron microscopy (FE-SEM), and Transmission electron microscopy (TEM) techniques. According to the textural characterization study, the specific surface area and pore volume of CNFs-coated monolith composites were significantly improved as compared to bare monolith which might be attributed to the growth of highly pure and aligned CNFs over monolith substrate. Besides that, the synthesized CNFs-coated monolith possessed extremely well thermal stability up to the temperature of 550 °C which was corresponded to the strong attachment of highly graphitized CNFs over monolith substrates.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0219936