A Trifluoromethyl Analogue of Celecoxib Exerts Beneficial Effects in Neuroinflammation

Celecoxib is a selective cyclooxygenase-2 (COX2) inhibitor. We have previously shown that celecoxib inhibits experimental autoimmune encephalomyelitis (EAE) in COX-2-deficient mice, suggestive for a mode of action involving COX2-independent pathways. In the present study, we tested the effect of a t...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 8; no. 12; p. e83119
Main Authors Di Penta, Alessandra, Chiba, Asako, Alloza, Iraide, Wyssenbach, Ane, Yamamura, Takashi, Villoslada, Pablo, Miyake, Sachiko, Vandenbroeck, Koen
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 11.12.2013
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Celecoxib is a selective cyclooxygenase-2 (COX2) inhibitor. We have previously shown that celecoxib inhibits experimental autoimmune encephalomyelitis (EAE) in COX-2-deficient mice, suggestive for a mode of action involving COX2-independent pathways. In the present study, we tested the effect of a trifluoromethyl analogue of celecoxib (TFM-C) with 205-fold lower COX-2 inhibitory activity in two models of neuroinflammation, i.e. cerebellar organotypic cultures challenged with LPS and the EAE mouse model for multiple sclerosis. TFM-C inhibited secretion of IL-1β, IL-12 and IL-17, enhanced that of TNF-α and RANTES, reduced neuronal axonal damage and protected from oxidative stress in the organotypic model. TFM-C blocked TNF-α release in microglial cells through a process involving intracellular retention, but induced TNF-α secretion in primary astrocyte cultures. Finally, we demonstrate that TFM-C and celecoxib ameliorated EAE with equal potency. This coincided with reduced secretion of IL-17 and IFN-γ by MOG-reactive T-cells and of IL-23 and inflammatory cytokines by bone marrow-derived dendritic cells. Our study reveals that non-coxib analogues of celecoxib may have translational value in the treatment of neuro-inflammatory conditions.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Performed the experiments: AdP AC AW. Analyzed the data: AdP AC IA TY PV SM KV. Contributed reagents/materials/analysis tools: KV PV SM TY. Wrote the manuscript: AdP AC SM KV. Carried out the microscopy, molecular studies, organotypic cultures, EAE model and performed the statistical analysis: AdP AC. Performed astrocytes cultures: AW. Participated in the design and interpretation of the study: AdP AC IA PV SM TY KV. Read and approved the final manuscript: AdP AC IA AW PV SM TY KV.
Competing Interests: The authors declare that Pablo Villoslada, as one of the co-authors of the manuscript, is a PLOS ONE Editorial Board. This does not alter the authors' adherence to all the PLOS ONE policies on sharing data and materials.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0083119