Exogenous melatonin promotes seed germination and osmotic regulation under salt stress in cotton (Gossypium hirsutum L.)

Melatonin (MT; N-acetyI-5-methoxytryptamine) is an amine hormone involved in abiotic stress resistance. Previous studies have confirmed that melatonin can promote seed germination, mediate physiological regulation mechanisms, and stimulate crop growth under stress. However, the osmotic regulation me...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 15; no. 1; p. e0228241
Main Authors Chen, Li, Liu, Liantao, Lu, Bin, Ma, Tongtong, Jiang, Dan, Li, Jin, Zhang, Ke, Sun, Hongchun, Zhang, Yongjiang, Bai, Zhiying, Li, Cundong
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 31.01.2020
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Melatonin (MT; N-acetyI-5-methoxytryptamine) is an amine hormone involved in abiotic stress resistance. Previous studies have confirmed that melatonin can promote seed germination, mediate physiological regulation mechanisms, and stimulate crop growth under stress. However, the osmotic regulation mechanism by which exogenous melatonin mediates salt tolerance in cotton is still largely unknown. To investigate the effect of salt stress on melatonin concentration in germinating cotton seeds, we analyzed melatonin content over time during seed germination under different treatments. Melatonin content reached its minimum at day 6, while cotton germination rates peaked at day 6, indicating melatonin content and seed germination are correlated. Then we investigated the effects of 10-100 μM melatonin treatments on membrane lipid peroxides and osmotic adjustment substances during cotton seed germination under salt stress. Salt stress led to electrolyte leakage (EL) as well as accumulations of hydrogen peroxide (H2O2), malondialdehyde (MDA), organic osmotic substances (i.e., proline, soluble sugars), and inorganic osmotic substances (i.e., Na+, Cl-). Meanwhile, the contents of melatonin, soluble proteins, and K+ as well as the K+/Na+ balance decreased, indicating that salt stress inhibited melatonin synthesis and damaged cellular membranes, seriously affecting seed germination. However, melatonin pretreatment at different concentrations alleviated the adverse effects of salt stress on cotton seeds and reduced EL as well as the contents of H2O2, MDA, Na+, and Cl-. The exogenous application of melatonin also promoted melatonin, soluble sugar, soluble proteins, proline, and K+/Na+ contents under salt stress. These results demonstrate that supplemental melatonin can effectively ameliorate the repression of cotton seed germination by enhancing osmotic regulating substances and adjusting ion homeostasis under salt stress. Thus, melatonin may potentially be used to protect cotton seeds from salt stress, with the 20 μM melatonin treatment most effectively promoting cotton seed germination and improving salt stress tolerance.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0228241