In site bioimaging of hydrogen sulfide uncovers its pivotal role in regulating nitric oxide-induced lateral root formation

Hydrogen sulfide (H2S) is an important gasotransmitter in mammals. Despite physiological changes induced by exogenous H2S donor NaHS to plants, whether and how H2S works as a true cellular signal in plants need to be examined. A self-developed specific fluorescent probe (WSP-1) was applied to track...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 9; no. 2; p. e90340
Main Authors Li, Yan-Jun, Chen, Jian, Xian, Ming, Zhou, Li-Gang, Han, Fengxiang X, Gan, Li-Jun, Shi, Zhi-Qi
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 27.02.2014
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Hydrogen sulfide (H2S) is an important gasotransmitter in mammals. Despite physiological changes induced by exogenous H2S donor NaHS to plants, whether and how H2S works as a true cellular signal in plants need to be examined. A self-developed specific fluorescent probe (WSP-1) was applied to track endogenous H2S in tomato (Solanum lycopersicum) roots in site. Bioimaging combined with pharmacological and biochemical approaches were used to investigate the cross-talk among H2S, nitric oxide (NO), and Ca(2+) in regulating lateral root formation. Endogenous H2S accumulation was clearly associated with primordium initiation and lateral root emergence. NO donor SNP stimulated the generation of endogenous H2S and the expression of the gene coding for the enzyme responsible for endogenous H2S synthesis. Scavenging H2S or inhibiting H2S synthesis partially blocked SNP-induced lateral root formation and the expression of lateral root-related genes. The stimulatory effect of SNP on Ca(2+) accumulation and CaM1 (calmodulin 1) expression could be abolished by inhibiting H2S synthesis. Ca(2+) chelator or Ca(2+) channel blocker attenuated NaHS-induced lateral root formation. Our study confirmed the role of H2S as a cellular signal in plants being a mediator between NO and Ca(2+) in regulating lateral root formation.
Bibliography:Conceived and designed the experiments: JC Z-QS L-JG. Performed the experiments: JC Y-JL. Analyzed the data: JC Y-JL. Contributed reagents/materials/analysis tools: MX. Wrote the paper: JC Y-JL L-GZ FH.
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0090340