Controlled ultrasound-induced blood-brain barrier disruption using passive acoustic emissions monitoring

The ability of ultrasonically-induced oscillations of circulating microbubbles to permeabilize vascular barriers such as the blood-brain barrier (BBB) holds great promise for noninvasive targeted drug delivery. A major issue has been a lack of control over the procedure to ensure both safe and effec...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 7; no. 9; p. e45783
Main Authors Arvanitis, Costas D, Livingstone, Margaret S, Vykhodtseva, Natalia, McDannold, Nathan
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 24.09.2012
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The ability of ultrasonically-induced oscillations of circulating microbubbles to permeabilize vascular barriers such as the blood-brain barrier (BBB) holds great promise for noninvasive targeted drug delivery. A major issue has been a lack of control over the procedure to ensure both safe and effective treatment. Here, we evaluated the use of passively-recorded acoustic emissions as a means to achieve this control. An acoustic emissions monitoring system was constructed and integrated into a clinical transcranial MRI-guided focused ultrasound system. Recordings were analyzed using a spectroscopic method that isolates the acoustic emissions caused by the microbubbles during sonication. This analysis characterized and quantified harmonic oscillations that occur when the BBB is disrupted, and broadband emissions that occur when tissue damage occurs. After validating the system's performance in pilot studies that explored a wide range of exposure levels, the measurements were used to control the ultrasound exposure level during transcranial sonications at 104 volumes over 22 weekly sessions in four macaques. We found that increasing the exposure level until a large harmonic emissions signal was observed was an effective means to ensure BBB disruption without broadband emissions. We had a success rate of 96% in inducing BBB disruption as measured by in contrast-enhanced MRI, and we detected broadband emissions in less than 0.2% of the applied bursts. The magnitude of the harmonic emissions signals was significantly (P<0.001) larger for sonications where BBB disruption was detected, and it correlated with BBB permeabilization as indicated by the magnitude of the MRI signal enhancement after MRI contrast administration (R(2) = 0.78). Overall, the results indicate that harmonic emissions can be a used to control focused ultrasound-induced BBB disruption. These results are promising for clinical translation of this technology.
Bibliography:Conceived and designed the experiments: CDA NM MSL. Performed the experiments: CDA NM MSL. Analyzed the data: CDA NM NV. Contributed reagents/materials/analysis tools: NV. Wrote the paper: CDA NM NV MSL.
Competing Interests: A pending patent (#21379) on the method presented (US Provisional application # 61/548,274 filed on October 18, 2011.) The focused ultrasound system was supplied by InSightec. There are no further products in development or marketed products to declare. This does not alter the authors' adherence to all the PLoS ONE policies on sharing data and materials, as detailed online in the guide for authors.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0045783