Dendritic cell based PSMA immunotherapy for prostate cancer using a CD40-targeted adenovirus vector

Human prostate tumor vaccine and gene therapy trials using ex vivo methods to prime dendritic cells (DCs) with prostate specific membrane antigen (PSMA) have been somewhat successful, but to date the lengthy ex vivo manipulation of DCs has limited the widespread clinical utility of this approach. Ou...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 7; no. 10; p. e46981
Main Authors Williams, Briana Jill, Bhatia, Shilpa, Adams, Lisa K, Boling, Susan, Carroll, Jennifer L, Li, Xiao-Lin, Rogers, Donna L, Korokhov, Nikolay, Kovesdi, Imre, Pereboev, Alexander V, Curiel, David T, Mathis, J Michael
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 08.10.2012
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Human prostate tumor vaccine and gene therapy trials using ex vivo methods to prime dendritic cells (DCs) with prostate specific membrane antigen (PSMA) have been somewhat successful, but to date the lengthy ex vivo manipulation of DCs has limited the widespread clinical utility of this approach. Our goal was to improve upon cancer vaccination with tumor antigens by delivering PSMA via a CD40-targeted adenovirus vector directly to DCs as an efficient means for activation and antigen presentation to T-cells. To test this approach, we developed a mouse model of prostate cancer by generating clonal derivatives of the mouse RM-1 prostate cancer cell line expressing human PSMA (RM-1-PSMA cells). To maximize antigen presentation in target cells, both MHC class I and TAP protein expression was induced in RM-1 cells by transduction with an Ad vector expressing interferon-gamma (Ad5-IFNγ). Administering DCs infected ex vivo with CD40-targeted Ad5-huPSMA, as well as direct intraperitoneal injection of the vector, resulted in high levels of tumor-specific CTL responses against RM-1-PSMA cells pretreated with Ad5-IFNγ as target cells. CD40 targeting significantly improved the therapeutic antitumor efficacy of Ad5-huPSMA encoding PSMA when combined with Ad5-IFNγ in the RM-1-PSMA model. These results suggest that a CD-targeted adenovirus delivering PSMA may be effective clinically for prostate cancer immunotherapy.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Competing Interests: The authors have read the journal’s policy and have the following conflicts: Imre Kovesdi is Chairman of the Board and Chief Executive Office of VectorLogics, Inc., David T. Curiel is Chief Scientific Officer and Founder of VectorLogics, Inc., and Nikolay Korokhov was employed as Senior Scientist at VectorLogics, Inc. during the execution of the work. This work uses technology based on U.S. patent 6,841,540 entitled “Immunomodulation by genetic modification of dendritic cells and B cells” that involves a CD40-targeted recombinant adenoviral vector for genetic manipulation of dendritic cells and B cells. No products in development, or marketed products are associated with this work. This competing interest does not alter the authors’ adherence to all the PLOS ONE policies on sharing data and materials. This does not alter the authors’ adherence to all the PLOS ONE policies on sharing data and materials.
Conceived and designed the experiments: BJW IK AVP DTC JMM. Performed the experiments: SB LKA SLB JLC XL DLR NK. Analyzed the data: BJW SB LKA SLB JLC XL DLR NK AVP IK DTC JMM. Contributed reagents/materials/analysis tools: BJW IK AVP DTC JMM. Wrote the paper: BJW SB LKA SLB JLC XL DLR NK AVP IK DTC JMM.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0046981