The dietary polysaccharide maltodextrin promotes Salmonella survival and mucosal colonization in mice

In the latter half of the 20th century, societal and technological changes led to a shift in the composition of the American diet to include a greater proportion of processed, pre-packaged foods high in fat and carbohydrates, and low in dietary fiber (a "Western diet"). Over the same time...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 9; no. 7; p. e101789
Main Authors Nickerson, Kourtney P, Homer, Craig R, Kessler, Sean P, Dixon, Laura J, Kabi, Amrita, Gordon, Ilyssa O, Johnson, Erin E, de la Motte, Carol A, McDonald, Christine
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 07.07.2014
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In the latter half of the 20th century, societal and technological changes led to a shift in the composition of the American diet to include a greater proportion of processed, pre-packaged foods high in fat and carbohydrates, and low in dietary fiber (a "Western diet"). Over the same time period, there have been parallel increases in Salmonella gastroenteritis cases and a broad range of chronic inflammatory diseases associated with intestinal dysbiosis. Several polysaccharide food additives are linked to bacterially-driven intestinal inflammation and may contribute to the pathogenic effects of a Western diet. Therefore, we examined the effect of a ubiquitous polysaccharide food additive, maltodextrin (MDX), on clearance of the enteric pathogen Salmonella using both in vitro and in vivo infection models. When examined in vitro, murine bone marrow-derived macrophages exposed to MDX had altered vesicular trafficking, suppressed NAPDH oxidase expression, and reduced recruitment of NADPH oxidase to Salmonella-containing vesicles, which resulted in persistence of Salmonella in enlarged Rab7+ late endosomal vesicles. In vivo, mice consuming MDX-supplemented water had a breakdown of the anti-microbial mucous layer separating gut bacteria from the intestinal epithelium surface. Additionally, oral infection of these mice with Salmonella resulted in increased cecal bacterial loads and enrichment of lamina propria cells harboring large Rab7+ vesicles. These findings indicate that consumption of processed foods containing the polysaccharide MDX contributes to suppression of intestinal anti-microbial defense mechanisms and may be an environmental priming factor for the development of chronic inflammatory disease.
Bibliography:Conceived and designed the experiments: KPN CM. Performed the experiments: KPN CRH SPK LJD AK EEJ CM. Analyzed the data: KPN IOG EEJ CM. Contributed reagents/materials/analysis tools: KPN AK IOG CdelaM CM. Contributed to the writing of the manuscript: KPN SPK EEJ CM.
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0101789