Comparisons of the Effects of Elevated Vapor Pressure Deficit on Gene Expression in Leaves among Two Fast-Wilting and a Slow-Wilting Soybean
Limiting the transpiration rate (TR) of a plant under high vapor pressure deficit (VPD) has the potential to improve crop yield under drought conditions. The effects of elevated VPD on the expression of genes in the leaves of three soybean accessions, Plant Introduction (PI) 416937, PI 471938 and Hu...
Saved in:
Published in | PloS one Vol. 10; no. 10; p. e0139134 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
01.10.2015
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Limiting the transpiration rate (TR) of a plant under high vapor pressure deficit (VPD) has the potential to improve crop yield under drought conditions. The effects of elevated VPD on the expression of genes in the leaves of three soybean accessions, Plant Introduction (PI) 416937, PI 471938 and Hutcheson (PI 518664) were investigated because these accessions have contrasting responses to VPD changes. Hutcheson, a fast-wilting soybean, and PI 471938, a slow-wilting soybean, respond to increased VPD with a linear increase in TR. TR of the slow-wilting PI 416937 is limited when VPD increases to greater than about 2 kPa. The objective of this study was to identify the response of the transcriptome of these accessions to elevated VPD under well-watered conditions and identify responses that are unique to the slow-wilting accessions. Gene expression analysis in leaves of genotypes PI 471938 and Hutcheson showed that 22 and 1 genes, respectively, were differentially expressed under high VPD. In contrast, there were 944 genes differentially expressed in PI 416937 with the same increase in VPD. The increased alteration of the transcriptome of PI 416937 in response to elevated VPD clearly distinguished it from the other slow-wilting PI 471938 and the fast-wilting Hutcheson. The inventory and analysis of differentially expressed genes in PI 416937 in response to VPD is a foundation for further investigation to extend the current understanding of plant hydraulic conductivity in drought environments. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 Conceived and designed the experiments: MJD TRS. Performed the experiments: MJD EWT. Analyzed the data: MJD EWT. Contributed reagents/materials/analysis tools: MJD TRS. Wrote the paper: EWT MJD TRS. Competing Interests: The authors have declared that no competing interests exist. |
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0139134 |