Chemical and genetic validation of the statin drug target to treat the helminth disease, schistosomiasis

The mevalonate pathway is essential in eukaryotes and responsible for a diversity of fundamental synthetic activities. 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) is the rate-limiting enzyme in the pathway and is targeted by the ubiquitous statin drugs to treat hypercholesterolemia. Indep...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 9; no. 1; p. e87594
Main Authors Rojo-Arreola, Liliana, Long, Thavy, Asarnow, Dan, Suzuki, Brian M, Singh, Rahul, Caffrey, Conor R
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 29.01.2014
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The mevalonate pathway is essential in eukaryotes and responsible for a diversity of fundamental synthetic activities. 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) is the rate-limiting enzyme in the pathway and is targeted by the ubiquitous statin drugs to treat hypercholesterolemia. Independent reports have indicated the cidal effects of statins against the flatworm parasite, S. mansoni, and the possibility that SmHMGR is a useful drug target to develop new statin-based anti-schistosome therapies. For six commercially available statins, we demonstrate concentration- and time-dependent killing of immature (somule) and adult S. mansoni in vitro at sub-micromolar and micromolar concentrations, respectively. Cidal activity trends with statin lipophilicity whereby simvastatin and pravastatin are the most and least active, respectively. Worm death is preventable by excess mevalonate, the product of HMGR. Statin activity against somules was quantified both manually and automatically using a new, machine learning-based automated algorithm with congruent results. In addition, to chemical targeting, RNA interference (RNAi) of HMGR also kills somules in vitro and, again, lethality is blocked by excess mevalonate. Further, RNAi of HMGR of somules in vitro subsequently limits parasite survival in a mouse model of infection by up to 80%. Parasite death, either via statins or specific RNAi of HMGR, is associated with activation of apoptotic caspase activity. Together, our genetic and chemical data confirm that S. mansoni HMGR is an essential gene and the relevant target of statin drugs. We discuss our findings in context of a potential drug development program and the desired product profile for a new schistosomiasis drug.
Bibliography:Competing Interests: The authors have declared that no competing interests exist.
Conceived and designed the experiments: LRA TL DA BMS RS CRC. Performed the experiments: LRA TL DA BMS RS CRC. Analyzed the data: LRA TL DA BMS RS CRC. Contributed reagents/materials/analysis tools: LRA TL DA RS CRC. Wrote the paper: LRA TL DA RS CRC.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0087594