Potential of the Desert Locust Schistocerca gregaria (Orthoptera: Acrididae) as an Unconventional Source of Dietary and Therapeutic Sterols

Insects are increasingly being recognized not only as a source of food to feed the ever growing world population but also as potential sources of new products and therapeutic agents, among which are sterols. In this study, we sought to profile sterols and their derivatives present in the desert locu...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 10; no. 5; p. e0127171
Main Authors Cheseto, Xavier, Kuate, Serge Philibert, Tchouassi, David P, Ndung'u, Mary, Teal, Peter E A, Torto, Baldwyn
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 13.05.2015
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Insects are increasingly being recognized not only as a source of food to feed the ever growing world population but also as potential sources of new products and therapeutic agents, among which are sterols. In this study, we sought to profile sterols and their derivatives present in the desert locust, Schistocerca gregaria, focusing on those with potential importance as dietary and therapeutic components for humans. Using coupled gas chromatography-mass spectrometry (GC-MS), we analyzed and compared the quantities of sterols in the different sections of the gut and tissues of the locust. In the gut, we identified 34 sterols which showed a patchy distribution, but with the highest composition in the foregut (55%) followed by midgut (31%) and hindgut (14%). Fed ad libitum on wheat seedlings, five sterols unique to the insect were detected. These sterols were identified as 7-dehydrocholesterol, desmosterol, fucosterol, (3β, 5α) cholesta-8, 14, 24-trien-3-ol, 4, 4-dimethyl, and (3β, 20R) cholesta-5, 24-dien-3, 20-diol with the first three having known health benefits in humans. Incubation of the fore-, mid- and hindgut with cholesterol-[4-13C] yielded eight derivatives, three of these were detected in the gut of the desert locust after it had consumed the vegetative diet but were not detected in the diet. Our study shows that the desert locust ingests phytosterols from a vegetative diet and, amplifies and metabolizes them into derivatives with potential salutary benefits and we discuss our findings in this context.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
Conceived and designed the experiments: XC MN PEAT BT. Performed the experiments: XC MN PEAT BT. Analyzed the data: XC SPK DPT MN PEAT BT. Contributed reagents/materials/analysis tools: PEAT BT. Wrote the paper: XC SPK DPT MN PEAT BT.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0127171