PIPS: pathogenicity island prediction software

The adaptability of pathogenic bacteria to hosts is influenced by the genomic plasticity of the bacteria, which can be increased by such mechanisms as horizontal gene transfer. Pathogenicity islands play a major role in this type of gene transfer because they are large, horizontally acquired regions...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 7; no. 2; p. e30848
Main Authors Soares, Siomar C, Abreu, Vinícius A C, Ramos, Rommel T J, Cerdeira, Louise, Silva, Artur, Baumbach, Jan, Trost, Eva, Tauch, Andreas, Hirata, Jr, Raphael, Mattos-Guaraldi, Ana L, Miyoshi, Anderson, Azevedo, Vasco
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 15.02.2012
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The adaptability of pathogenic bacteria to hosts is influenced by the genomic plasticity of the bacteria, which can be increased by such mechanisms as horizontal gene transfer. Pathogenicity islands play a major role in this type of gene transfer because they are large, horizontally acquired regions that harbor clusters of virulence genes that mediate the adhesion, colonization, invasion, immune system evasion, and toxigenic properties of the acceptor organism. Currently, pathogenicity islands are mainly identified in silico based on various characteristic features: (1) deviations in codon usage, G+C content or dinucleotide frequency and (2) insertion sequences and/or tRNA genetic flanking regions together with transposase coding genes. Several computational techniques for identifying pathogenicity islands exist. However, most of these techniques are only directed at the detection of horizontally transferred genes and/or the absence of certain genomic regions of the pathogenic bacterium in closely related non-pathogenic species. Here, we present a novel software suite designed for the prediction of pathogenicity islands (pathogenicity island prediction software, or PIPS). In contrast to other existing tools, our approach is capable of utilizing multiple features for pathogenicity island detection in an integrative manner. We show that PIPS provides better accuracy than other available software packages. As an example, we used PIPS to study the veterinary pathogen Corynebacterium pseudotuberculosis, in which we identified seven putative pathogenicity islands.
Bibliography:Conceived and designed the experiments: AM VA. Performed the experiments: SCS VACA RTJR LC AS. Analyzed the data: SCS VACA RTJR LC AS JB ET AT RH ALMG AM VA. Contributed reagents/materials/analysis tools: SCS VACA RTJR LC AS JB ET AT RH ALMG AM VA. Wrote the paper: SCS VACA RTJR LC AS JB ET AT RH ALMG AM VA. Read and gave insights about the software: SCS VACA RTJR LC AS JB ET AT RH ALMG AM VA.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0030848