Identification of critical residues for the activity and thermostability of Streptomyces sp. SK glucose isomerase

The role of residue 219 in the physicochemical properties of D-glucose isomerase from Streptomyces sp. SK strain (SKGI) was investigated by site-directed mutagenesis and structural studies. Mutants G219A, G219N, and G219F were generated and characterized. Comparative studies of their physicochemical...

Full description

Saved in:
Bibliographic Details
Published inApplied microbiology and biotechnology Vol. 97; no. 22; pp. 9715 - 9726
Main Authors Ben Hlima, Hajer, Bejar, Samir, Riguet, Jonas, Haser, Richard, Aghajari, Nushin
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer-Verlag 01.11.2013
Springer Berlin Heidelberg
Springer
Springer Nature B.V
Springer Verlag
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The role of residue 219 in the physicochemical properties of D-glucose isomerase from Streptomyces sp. SK strain (SKGI) was investigated by site-directed mutagenesis and structural studies. Mutants G219A, G219N, and G219F were generated and characterized. Comparative studies of their physicochemical properties with those of the wild-type enzyme highlighted that mutant G219A displayed increased specific activity and thermal stability compared to that of the wild-type enzyme, while for G219N and G219F, these properties were considerably decreased. A double mutant, SKGI F53L/G219A, displayed a higher optimal temperature and a higher catalytic efficiency than both the G219A mutant and the wild-type enzyme and showed a half-life time of about 150 min at 85 °C as compared to 50 min for wild-type SKGI. Crystal structures of SKGI wild-type and G219A enzymes were solved to 1.73 and 2.15 , respectively, and showed that the polypeptide chain folds into two structural domains. The larger domain consists of a (β/α)₈ unit, and the smaller domain forms a loop of α helices. Detailed analyses of the three-dimensional structures highlighted minor but important changes in the active site region as compared to that of the wild-type enzyme leading to a displacement of both metal ions, and in particular that in site M2. The structural analyses moreover revealed how the substitution of G219 by an alanine plays a crucial role in improving the thermostability of the mutant enzyme.
Bibliography:http://dx.doi.org/10.1007/s00253-013-4784-2
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0175-7598
1432-0614
DOI:10.1007/s00253-013-4784-2